Isolation and characterization of ice recrystallization inhibitory molecules from black soldier fly larvae
Black soldier fly larvae (BSFL) have demonstrated cold tolerance that suggests the presence of cryoprotective molecules. The objective of this research was to investigate if the proteins present in the BSFL have ice recrystallization inhibition (IRI) activity and how different environmental factors affect the activity. Osborne fractionation of the defatted BSFL was performed to separate the proteins based on solubility, then preparative size exclusion chromatography was used to fractionate the albumin fraction by molecular size to isolate IRI or ice binding proteins. The major proteins in the active fractions were identified by mass spectrometry, and molecular dynamic simulations were performed with two proteins identified to investigate their behaviors in an ice-water system. The main finding is the strong IRI activity of the water-soluble BSFL albumin fraction and the column fractionated fraction 1. This fraction had a 40.4-79.9% reduction in ice crystal size at 1% concentration and under a wide pH (3-9) and salt concentration (10-200 mM NaCl). Pure proteins recovered were sequenced and identified as cuticle proteins by mass spectrometry. One cuticle protein demonstrated strong H-bonding and structural flexibility by molecular dynamic simulations, explaining the IRI and ice binding activity. This is the first time BSFL protein is reported to possess IRI activity, and such protein extract can be feasibly obtained compared to other naturally occurring antifreezing proteins.