Multisensory Information Facilitates the Categorization of Untrained Stimuli
Although it has been demonstrated that multisensory information can facilitate object recognition and object memory, it remains unclear whether such facilitation effect exists in category learning. To address this issue, comparable car images and sounds were first selected by a discrimination task in Experiment 1. Then, those selected images and sounds were utilized in a prototype category learning task in Experiments 2 and 3, in which participants were trained with auditory, visual, and audiovisual stimuli, and were tested with trained or untrained stimuli within the same categories presented alone or accompanied with a congruent or incongruent stimulus in the other modality. In Experiment 2, when low-distortion stimuli (more similar to the prototypes) were trained, there was higher accuracy for audiovisual trials than visual trials, but no significant difference between audiovisual and auditory trials. During testing, accuracy was significantly higher for congruent trials than unisensory or incongruent trials, and the congruency effect was larger for untrained high-distortion stimuli than trained low-distortion stimuli. In Experiment 3, when high-distortion stimuli (less similar to the prototypes) were trained, there was higher accuracy for audiovisual trials than visual or auditory trials, and the congruency effect was larger for trained high-distortion stimuli than untrained low-distortion stimuli during testing. These findings demonstrated that higher degree of stimuli distortion resulted in more robust multisensory effect, and the categorization of not only trained but also untrained stimuli in one modality could be influenced by an accompanying stimulus in the other modality.