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Text S1. Diffeomorphic Shape Matching using deformetrica 

The deformation between shapes can be described by the action of diffeomorphisms, 

smooth and invertible functions that align two shapes by deforming the underlying domain. 

This is realized by placing a regular grid of 𝑁𝑝 control points (𝑞𝑖)𝑖=1,…,𝑁𝑝 over the meshes. 

Vectors (𝜇𝑖)𝑖=1,…,𝑁𝑝, called momenta, are attached to each control point. Together the control 

points and momenta parameterize the diffeomorphism, which is modelled as a vector field 

 

𝑋(𝑥) =∑𝐾(𝑥, 𝑞𝑖) ∙ 𝜇𝑖

𝑁𝑝

𝑖=1

. 

1 

 

Here, 𝑋(𝑥) is the vector field at position 𝑥 ∈ ℝ𝑑, 𝑑 ∈ {2,3} and 𝐾(𝑥1, 𝑥2) = exp⁡(−
‖𝑥1−𝑥2‖

2

𝜎2
) 

is a Gaussian Kernel with width 𝜎. During the matching procedure, the underlying space is 

deformed by optimizing the positions of the control points 𝑞𝑖 and the momenta 𝜇𝑖 to to align a 

shape 𝑆𝑗 to a reference shape T. The output of the DSM using deformetrica is the control points 

and deformation momenta, describing the amount of deformation necessary to align the shapes. 

In the following, we denote the optimized momenta by the matrix 𝑀 ∈ ℝ𝑁𝑝,𝑑, where d is the 

dimension of the underlying space (here: d=2 for the chin profile and d=3 for the chin surface), 

and 𝑁𝑝 the number of control points. 

We employed and compared two algorithms implemented in deformetrica: (i) 

deterministic atlas construction, and (ii) pairwise registrations. Given a set 𝒮 = {𝑆𝑖}𝑖=1,…,𝑁𝑠 of 

𝑁𝑠 shape.   For the atlas construction, each shape is aligned to an a priori defined template 

shape T. We interpreted the deformation momenta 𝑀𝑖 from shape 𝑆𝑖 to the template as 

coordinates in shape space. Using the pairwise registration, we performed pairwise shape 

matching between all pairs of shapes in 𝒮. We interpreted the resulting deformation momenta 

𝑀𝑖𝑗 between shapes 𝑆𝑖, 𝑆𝑗 as a notion of pairwise distances.  
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Both approaches have their limitations. To construct a deterministic atlas, an unbiased 

template T must exist and has to be created (see figs. 1 and 2), which is not a straightforward 

task. Then, with an appropriate template, 𝑁𝑠 registrations for a population of 𝑁𝑠 shapes are 

performed. Employing pairwise registrations overcomes the difficulty of defining a template 

shape. 

However, instead of only 𝑁𝑠 registrations to construct an atlas, 
𝑁𝑠(𝑁𝑠−1)

2
 registrations 

are necessary to align all pairs. This makes the pairwise approach computationally more 

demanding. The most important hyperparameters for a successful shape matching are the 

kernel size 𝜎𝑊 for the computations of the metric for optimization (see [Durrleman, et al., 2014] 

for a detailed explanation) and the number of control points. The control points are initialized 

with spacing 𝜎 from Eq. (1). We empirically selected 𝜎𝑊 = 8⁡𝑚𝑚 and 𝜎 = 3𝑚𝑚 in all 

experiments, which resulted in 𝑁𝑝 = 30 control points for the profile in 1D and 𝑁𝑝 = 180 

control points for the surface in 2D.  

 

Text S2. Kernel Principal Component Analysis for dimensionality reduction 

The deformation momenta provide the most important information for statistical 

analysis as they describe the amount of deformation between two shapes, either momenta 𝑀𝑖 

for specimen shape 𝑆𝑖 and template shape 𝑇 (atlas), or momenta 𝑀𝑖𝑗 for two specimens’ shapes 

𝑆𝑖 and 𝑆𝑗 (pairwise).   

We applied non-linear Kernel Principal Component Analysis (kPCA) (Schölkopf, 

1998) to the deformation momenta to identify the principal modes of variation. The output 

provides new coordinates in a low-dimensional embedding space, which is analyzed to find 

cluster in the data with similar shape. In particular, kPCA maps a high-dimensional input 
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manifold to a lower-dimensional output manifold using the so-called kernel-trick. Given a data 

matrix 𝑋 ∈ ℝ𝑁,𝑝 with N data points 𝑥𝑖 ∈ ℝ𝑝 of dimension p. kPCA finds a representation 

𝑌𝑁,𝑞 , 𝑞 < 𝑝, by transforming the input data nonlinearly onto a feature space 𝐹 using the 

mapping Φ:ℝ𝑝 → 𝐹. This mapping is never computed explicitly, but described by a kernel 

function representing the inner product in the feature space. The kernel matrix 𝐾 =

(𝐾𝑖𝑗)𝑖,𝑗=1,…,𝑁 is given by 

𝐾𝑖𝑗 = 𝑘(𝑥𝑖 , 𝑥𝑗) = 〈Φ(𝑥𝑖), Φ(𝑥𝑗)〉 = Φ(𝑥𝑖) ∙ Φ(𝑥𝑗)
𝑇
 

and its eigenvalues are used to find the low dimensional embedding (comparable to standard 

PCA).  

 

ATLAS APPROACH 

We collect the deformation momenta 𝑀𝑖 for all shapes 𝑆𝑖, 𝑖 = 1,… ,𝑁𝑠, in a momenta 

matrix ℳ ∈ ℝ𝑁𝑠,𝑑∙𝑁𝑝, where the ith row of ℳ are the linearized momenta 𝑀𝑖 for the alignment 

of 𝑆𝑖 to template T with ℳ𝑖 = [𝜇𝑖,1
(1), … , 𝜇𝑖,1

(𝑑), 𝜇𝑖,2
(1), … , 𝜇𝑖,2

(𝑑), …⁡ , 𝜇𝑖,𝑁𝑝
(1) , … , 𝜇𝑖,𝑁𝑝

(𝑑) ] ∈ ℝ𝑑∙𝑁𝑝 and 

momenta 𝜇𝑖,𝑛 = (𝜇𝑖,𝑛
(1), … , 𝜇𝑖,𝑛

(𝑑)) ∈ ℝ𝑑 of control point 𝑞𝑛. kPCA is then performed on the 

momenta matrix ℳ using a kernel of radial basis functions. 

 

PAIRWISE APPROACH 

In contrast to the atlas approach, the pairwise approach does not yield a set of momenta 

for each shape, but for each pair of shapes. Therefore, it is not possible to apply kPCA as 

described in the previous paragraph. Instead, we compute directly the kernel matrix 𝐾 using 
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𝐾𝑖𝑗 = exp(−𝛾 ∙ 𝑑𝑖𝑗) with distance 𝑑𝑖𝑗 =
1

𝑁𝑝
∑ ‖𝜇𝑖𝑗,𝑛‖

2𝑁𝑝
𝑛=1  for momenta 𝜇𝑖𝑗,𝑛 =

(𝜇𝑖𝑗,𝑛
(1) , … , 𝜇𝑖𝑗,𝑛

(𝑑) ) ∈ ℝ𝑑 , 𝑛 = 1,…𝑁𝑝. 

For both approaches, we obtain an output matrix 𝒴 ∈ ℝ𝑁𝑠,𝑞 of new coordinates 𝑦𝑖 ∈

ℝ𝑞 , 𝑖 = 1,… ,𝑁𝑠 for each shape 𝑆𝑖. We selected 𝑞 = 5 output dimensions in all experiments. 

We analyzed the new representations 𝑦𝑖 of shapes 𝑆𝑖, 𝑖 = 1,… ,𝑁𝑠 regarding their ability to 

distinguish and capture different properties of the samples, such as taxon, sex, age (sex and age 

only for the modern human sample).  
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Figure S2. Modern human sample. Plot of principal components obtained by kernel PCA 

using the atlas and pairwise approach on the symphyseal surface and midsagittal profile. A: 

Most predictive dimension for group differences. Plot of the first and fourth (most predictive 

for geographical origin) principal component. Colour coding according to African (red) and 
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European (blue). B: Sex-type differences. Plot of the first two principal components. Colour 

coding according to male (red, blue) and female (orange, light blue). C: Shape and age: Plot 

of the first two principal components. Colour coding according to age in years. 
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Figure S2. Modern human sample with age distribution from neonate to 7 years. (A.1-2; B.1-

2) Plot of the first two principal components obtained by kernel PCA using the atlas approach 

on the symphyseal surface (A) and midsagittal profile (B). Individuals older than 7 years are 

excluded from this analysis, but still a larger variation can be observed in the African sample 

(red) compared to the European sample (blue) with a percentage difference of 24.4% on the 

surface and 64.3% on the profile. (A.3, B.3) Linear regression of the first principal 

component with the age (in years). 
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Figure S3. GMM plots of first two principal components. Binary plots of the first two 

dimensions from a Principal Component Analysis after a Generalized Procrustes Analysis of 

60 and 120 semi-landmarks on the symphyseal surface (A, B, respectively) or 15 and 30 

semi-landmarks of the midsagittal profile (C, D, respectively). Red triangles and blue circles 

are for European and African modern humans, respectively. Green squares and purple 

diamonds are for Paranthropus robustus and Australopithecus africanus, respectively. 
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Figure S4. GMM analysis of the midsagittal profile. (A) Binary plot of the first two 

dimensions from a Principal Component Analysis after a Generalized Procrustes Analysis of 

15 semilandmarks located on the midsagittal profile (2D). Red triangles and blue circles are 

for European and African modern humans, respectively. Green squares and purple diamonds 

are for Paranthropus robustus and Australopithecus africanus, respectively. (B) Difference 

between the semilandmark configurations of the minimum (green) and maximum (red) values 

along PC1 in the shape space (A). (C) Difference between the mean shapes of A. africanus 

(purple) and P. robustus (green). (D) Difference between the mean shapes of modern humans 

from Europe (blue) and Africa (red). (E) Significant linear correlation between shape 

differences cause by allometry (or Common Allometric Component, CAC) and centroid size 

(CS). (F) Relationship between shape differences caused by allometry (CAC) those that are 

not (or Residual Shape Component, RSC1). 
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Figure S5. GMM analysis of the symphyseal surface. (A): Binary plot of the first two 

dimensions from a Principal Component Analysis after a Generalized Procrustes Analysis of 

60 semilandmarks located on the symphyseal surface (3D). Red triangles and blue circles are 

for European and African modern humans, respectively. Green squares and purple diamonds 

are for Paranthropus robustus and Australopithecus africanus, respectively. (B) Difference 

between the semilandmark configurations of the minimum (red) and maximum (green) values 

along PC1 in the shape space (A). (C) Difference between the mean shapes of A. africanus 

(purple) and P. robustus (green). (D) Difference between the mean shapes of modern humans 

from Europe (blue) and Africa (red). (E) Significant linear correlation between shape 

differences cause by allometry (or Common Allometric Component, CAC) and centroid size 

(CS). (F) Relationship between shape differences caused by allometry (CAC) those that are 

not (or Residual Shape Component, RSC1). 
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Figure S6. Illustration of pre-processing steps. (A): Landmarks for global mesh alignment in 

the pre-processing. 10 Landmarks were selected manually to obtain a global matching using 

Procrustes alignment (rotation + translation + scaling). This was done separately for the 

modern human (left) and fossil samples (right). Both samples were finally aligned by 

manually selecting the corresponding landmarks in the fossil and modern human sample 

(middle). (B): The region of interest is bounded by the mesial faces of the left and right 
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crowns of the deciduous or permanent canines and bounded superiorly by the base of the 

alveolar bone to exclude the teeth. (C): Illustration of automatic semi-landmark extraction. 

2D: The endpoints of the midsagittal profile are located as the points with the smallest second 

spatial coordinate (x2). NL equidistantly distributed points along the curve are selected as 

semi-landmarks. 3D: NL1 equidistant 2D slices are extracted, each containing a profile curve. 

For each profile, NL2 semi-landmarks are extracted as explained above resulting in 𝑁𝐿1 ×𝑁𝐿2 

semi-landmarks. 
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Table S1. Within-group variation. To compare the variation between the modern human 

populations (African vs. European), the within-group variation is calculated as (𝑁 − 1) ⋅

∑ (𝑥𝑖 − 𝑥̅)2𝑁
𝑖=1  where 𝑁 samples 𝑥𝑖 belonging to group 𝑔 are represented by their PC 

coordinates. Additionally, we report the difference between the within-group variation of the 

two groups in percentage and we tested the statistical difference of the within-group variation 

(difference of samples to their group mean) using an unpaired one-sided t-test and report the 

p-values. Populations: Modern humans, Modern humans* (African population without the six 

individuals between 11 and 16 years of age), All (modern humans and australopiths). 

   Atlas Pairwise 

   Profile Surface Profile Surface 

Modern 

humans 

African Within- 4.080 5.907 2.659 2.309 

European Group var. 1.961 3.729 1.114 1.337 

 % 108.09% 58.44% 138.69% 72.74% 

 p-val. < 0.001 < 0.01 < 0.001 < 0.01 

Modern 

humans* 

African Within- 3.204 4.632 – – 

European Group var. 1.950 3.724 – – 

 % 64.28% 24.37% – – 

  p-val. <0.001 <0.01 – – 

 African Within- 3.861 5.522 2.810 2.383 

 European Group var. 1.812 3.471 1.148 1.364 

All  % 113.13% 59.09% 144.88% 74,71% 

  p-val. <0.001 <0.01 <0.0001 <0.01 

 A. africanus Within- 0.261 0.038 0.064 0.011 

 P. robustus Group var. 0.304 0.146 0.057 0.031 
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Video S1. Modern human sample. Plot of first three principal components obtained by kernel 

PCA using the atlas approach on the symphyseal surface. 

 

Video S2. Modern human sample. Plot of first three principal components obtained by kernel 

PCA using the pairwise approach on the symphyseal surface. 

 

Video S3. Modern human sample. Plot of first three principal components obtained by kernel 

PCA using the atlas approach on the midsagittal profile. 

 

Video S4. Modern human sample. Plot of first three principal components obtained by kernel 

PCA using the pairwise approach on the midsagittal profile. 

 

Video S5. Modern human sample. Visualization of shape differences captured in the 

midsagittal profile. Heatmaps on global mean shape show the point displacement (in mm) 

between groups. 

 

Video S6. Modern human sample. Visualization of shape differences captured in the 

symphyseal surface. Heatmaps on global mean shape show the volume change (in %) 

between groups. 

 

Video S7. Modern human and australopith sample. Plot of first three principal components 

obtained by kernel PCA using the atlas approach on the symphyseal surface. 
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Video S8. Modern human and australopith sample. Plot of first three principal components 

obtained by kernel PCA using the pairwise approach on the symphyseal surface. 

 

Video S9. Modern human and australopith sample. Plot of first three principal components 

obtained by kernel PCA using the atlas approach on the midsagittal profile. 

 

Video S10. Modern human and australopith sample. Plot of first three principal components 

obtained by kernel PCA using the pairwise approach on the midsagittal profile. 

 

Video S11. Modern human and australopith sample. Visualization of shape differences 

captured in the midsagittal profile. Heatmaps on global mean shape show the point 

displacement (in mm) between groups. 

 

Video S12. Modern human and australopith sample. Visualization of shape differences 

captured in the symphyseal surface. Heatmaps on global mean shape show the volume 

change (in %) between groups. 

 

 

 

  


