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• During the last 9 talks, I have told you to do a lot 
of things
– e.g., don't just use frequencies – add dispersion 
measures (or adjusted frequencies) to your data

– e.g., don't just use probabilities of co-occurrence – 
use association measures (such as pFYE or ΔP) instead

– e.g., don't just use co-occurrence frequencies or 
isolated examples to describe the semantics of synonyms, 
antonyms, and polysemous items – use Behavioral Profiles

– e.g., don't rely on introspective data to, say, predict 
speaker behavior – use multifactorial models instead

• I have sometimes alluded to experimental evidence 
for the recommended methods – in this talk, I will 
discuss several kinds of experimental evidence in 
more detail

After all my telling what to do, now I 
will even tell you (more about) why ;-)
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• Earlier, I discussed the risks that
come with frequency data that do not
also take dispersion into account

• I proposed a measure ≈0≤DP≤1 that
can serve to put frequencies into
a better perspective

• DP has many attractive properties
– handles differently large corpus parts
– easy to understand: difference of %s
– can handle frequencies of occurrence
and co-occurrence

– sensitive: does not return extreme
values too quickly
not too sensitive: does not overpena-
lize zeros and does not react to low
expected frequencies

Recap: dispersion to make frequencies 
more precise
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• This is not just corpus-linguistic playing with 
numbers
– Ellis & Simpson-Vlach (2005) and Ellis et al. (2007) 
show that a dispersion measure (range) has significant 
predictive power above and beyond raw frequency

– Gries (2010) shows that some dispersion measures 
correlate more highly with
• response time latencies from Balota & Spieler (1998) than 
raw frequencies

• lexical decision task times from Baayen (2008)
• "given a certain number of exposures to a stimulus 
[…], learning is always better when exposures or 
training trials are distributed over several 
sessions than when they are massed into one 
session." (Ambridge et al. 2006: 175)

• thus, there is good experimental reason to augment 
frequencies with dispersion measures

What dispersion measures buy us
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University of California, Santa Barbara
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• Earlier, I discussed the advantages of using 
collostructional analysis (CA) to study the 
association of words to constructional slots

• I already mentioned a few studies that showed 
expe-rimentally that CA is often better than the use 
of just frequencies/probabilities of co-occurrence
– Gries, Hampe, & Schönefeld (2005): sentence completions 
are predicted better by pFYE than by frequency

– Wiechmann (2008): pFYE is the best unproblematic measure 
to predict eye-tracking data from Kennison (2001)

– Gries, Hampe, & Schönefeld (2010): self-paced reading 
times are predicted better by pFYE than by frequency

• but if the logic underlying CA is correct, 
association effects should also be observable for 
advanced learners

Recap: collostructions to measure 
verb-constructions associations better
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• Target of study: to- vs. ing-complementation
– People began to make strenuous efforts
People began making strenuous efforts

• this alternation
– is often tricky for learners (because of the overall 
semantic similarity but occasional differences)
• Sheila tried to bribe the jailor
Sheila tried bribing the jailor

• I remembered to fill out the form
I remembered filling out the form

– is characterized by strong lexical associations
– has not been studied much from an SLA perspective

• sequence of methods
– corpus analysis of to vs. ing based on the ICE-GB
– questionnaire experiment that combines

• an acceptability judgment task
• a sentence completion task

A test case with
advanced learners of English
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• Corpus analysis with distinctive collexeme analysis
– verbs associated with to:
want (55.67), try (22.44), wish (5.39), manage (4.77), 
seek (4.35), tend (4.06), intend (3.67), attempt (3.19), 
hope (3.19) fail (3.09), like (3.03), refuse (2.98), …

– verbs associated with ing:
keep (76.45), start (35.23), stop (29.45), avoid 
(11.87), end (11.87), enjoy (11.87), mind (11.87), 
remember (10.14), go (7.99), consider (5.45), …

• experiment

– 12 experimental items (6 completions + 6 ratings) +
24 filler items

– acceptability judgments on a scale from -3 to +3

Methodology

Stefan Th. Gries
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• We obtained 556 ratings from 94 subjects and 
analysed the data with a linear model
– dependent variable: RATING
– independent variable 1: CONSTRUCTION PRIME: to vs. ing
– independent variable 2: COLLOSTRUCTION PRIME: to vs. ing

• overall results
– the model is
significant:
F3, 552=15.15,
p<0.001

– the effect is
very weak: 
R2=0.07

– but the inter-
action strongly
confirms collo-
structions

Results from the acceptability judgments
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• We obtained 560 completions from 94 subjects, 
in-cluding 176 to- + 193 ing-constructions, and 
analysed them with a logistic regression
– dependent variable: COMPLETION: to vs. ing
– indep. variable 1: CONSTRUCTION PRIME: to vs. ing
– indep. variable 2: COLLOSTRUCTION PRIME: to vs. ing
– indep. variable 3: COLLOSTRUCTION FRAGMENT: to vs. ing
– …

• overall results
– the model is significant:
LL X2=128.46, df=5, p<0.0001

– the predictive accuracy is good:
R2=0.39, C=0.82

– the collostructional preference of the
verb in the target fragment (COLLOSTRUCTION
PRIME) is the strongest predictor
(OR=9) and supports collostructions

One result from the sentence completions
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• Earlier, I discussed the advantages of
Behavioral Profiling

• I already mentioned that the cluster
analyses and post-hoc analyses of BP
were quite revealing and versatile

• the question of course now is, is there
any independent, not to say converging
evidence, to support the clusters
and make them more than correlations
in corpus data?

• after all, a cluster analysis will
always generate some tree whatever
nonsense it is fed …

• some (experimental) validation is
indispensable (cf. Divjak & Gries 2008)

Recap: Behavioral profiles

Stefan Th. Gries
University of California, Santa Barbara

The advantages, and the risk of?, Behavioral Profiles
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An evaluation metric based on co-classification
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• Students from a Moscow CompSci and Econ Dept were 
given instructions to sort 9 sentences that only 
differed with regard to the verb meaning 'to try'
– into n groups of similar sentences
– into 3 groups of similar sentences
– into 3 groups of 3 similar sentences each

• but how do we evaluate such data?
• how do we compare this with a cluster diagram?
• two approaches
– with a newly developed evaluation metric
– with a comparison of dendrograms
(I will focus only on the first sorting task, the 
results for all others are virtually identical)

An experimental validation of BP
using a sorting task
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• Step 1: generate a co-classification matrix that 
states for each verb how often it was put into one 
group with every other verb

• step 2: compute the Pearson residuals for every cell 
in the table to identify deviations
– (obs-exp)/sqrt(exp)

• step 3: mark the highest Pearson residuals in every 
row
– if a target verb's highest Pearson residual was observed 
for a verb from the same cluster (in the corpus 
analysis), score 1 point

– otherwise, score 0 points

The evaluation metric (theory)
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University of California, Santa Barbara
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• Step 1

• step 2

• step 3: 8 points …
• … but what kind of a result is this? there is not 
immediately available expected distribution → step 4

Stefan Th. Gries
University of California, Santa Barbara

prob star

a b c d … … … …

a f g h … … … …

b f k l … … … …

… … … … … … … … …

noro pory sil pyt pyz tschi tuz

noro

pory

sil

prob star

5.7 -2.27 -1.5 -2.12 -2.18 -2.56 -0.75 -2.63

5.7 -3.22 -1.45 -1 -0.54 -3.04 -1.59 -3.36

-2.27 -3.22 -1.67 -2.25 -1.84 1.73 0.15 2.74

prob -1.5 -1.45 -1.67 3.77 1.32 -2.93 -2.9 -3

-2.12 -1 -2.25 3.77 3.22 -3.26 -2.97 -3.32

star -2.18 -0.54 -1.84 1.32 3.22 -2.32 -2.73 -2.64

-2.56 -3.04 1.73 -2.93 -3.26 -2.32 0.19 4.39

-0.75 -1.59 -0.15 -2.9 -2.97 -2.73 0.19 0.36

-2.63 -3.36 2.74 -3 -3.32 -2.64 4.39 0.36

noro pory sil pyt pyz tschi tuz

noro

pory

sil

pyt

pyz

tschi

tuz

The evaluation metric (practice)
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• Step 4
– the minimal obtainable value is 0
– the maximal obtainable value is 9
– the expected score is 2.25 (9 Vs scoring ¼ on average)
– Monte Carlo simulation: we generated a vector with all 
possible scores {1,1,0,0,0,0,0,0} and sampled one value 
from it with replacement 9 times and added the values up

– we did that 100,000 times
– we counted how often we obtained our sample result of 8 
as a sum or even more

– 12 out of 100,000 times, i.e. p=0.00012
– quantiles of the simulation data

The evaluation metric: inference

Stefan Th. Gries
University of California, Santa Barbara
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Quantile 0.005 0.010 0.025 0.050 0.500 0.950 0.975 0.990 0.999
∑ 0 0 0 0 2 4 5 6 6
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• We computed a cluster analysis on the sorting data 
(with the same parameters as for the corpus data)

Fowlkes & Mallows (1983)
B
k
=0.74 (0≤B

k
≤1): good overlap

• both kinds of analyzing the sorting data result in a 
clear and significant confirmation of the 
corpus-based BP cluster analysis

Stefan Th. Gries
University of California, Santa Barbara

Comparison of dendrograms
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• Earlier, I discussed how multifactorial modeling is 
often the most useful approach to study data (esp. 
if those data are complex)

• however, with the exception of some newer 
develop-ments (NDL or Bayesian networks), the math 
under-lying regression models is hardly cognitively 
realistic

• thus, it would be good if there was a way to 
determine whether what they predict
– does not just have a good classification accuracy when 
it comes to the corpus data from which the model was 
derived

– but also predicts experimental behavior
• we have seen some examples above with regard to 
verb-construction associations – the following will 
consider prototypicality of construction exemplars

Recap: multifactorial models are 
indispensable

Stefan Th. Gries
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Multifactorial models, yes – but what do they reflect?
The dative alternation and its predictors
Corpus results and its prototypical cases
Experimental validation with judgment data
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• Target of study: the dative alternation in English
– John gave Mary the book ditransitive
John gave the book to Mary prepositional dative

• the dative alternation is affected by a large number 
of interconnected factors

• Gries (2003) coded
– whether the VP denotes transfer
– animacy of patient and recipient
– NP type of patient and recipient
– definiteness of patient and recipient
– length of patient and recipient
– times of preceding mention of patient and recipient
– distance to last mention of patient and recipient

• two main questions (at the time)
– can the constructional choice be predicted?
– can prototypical instances of the two constructions be 
identified?

The design of the corpus part
of the study

Stefan Th. Gries
University of California, Santa Barbara
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• A linear discriminant analysis shows the 
constructional choices can be predicted well
– the model is significant: X2=112.12, df=30, p<0.001
– canonical R=0.821, classification accuracy=88.9%

• how does the model predict constructional choices?
• it uses a discriminant score
– if that score > 0, the model predicts ditr
– if that score < 0, the model predicts prep
– the further away the score of a sentences is from 0, …
– the more that sentence has the characteristics typical 
for one construction, …

– and the more certain is the prediction
• prototypes for
– ditr.: going round beer festivals gave me the idea …
– prep.: [X, Y, and Z] gave a new impetus both to the 
study of these themes and to action upon them

Findings from the corpus analysis
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• From this, it follows that the sentences with the 
most extreme scores should embody the prototypes, 
and speakers should strongly disprefer these 
sentences in the opposite construction

• experimental design
– independent variable 1: PREDICTION: I picked

• 2 sentences predicted to be highly typical of ditr
• 2 sentences predicted to be highly typical of prep
• 2 sentences predicted to accept both constructions

– independent variable 2: CONSTRUCTION: each sentence was 
provided in its original construction or the opposite

– dependent variable: JUDGMENT (ranging from -3 to +3)
– 36 native speakers of English
– plus the usual experimental controls

• prediction
– the speakers should like stimuli when they are presented 
in the structure that the corpus analysis predicted to 
be preferred

Follow-up acceptability judgment 
experiment
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• The result of a linear model is quite clear
– the model is significant: F5, 173=12.22, p<0.0001
– the effect is intermediately strong: adj. R2=0.24
– the predicted interaction is

• the strongest effect
• exactly as predicted
– when the corpus model predicts
ditr, then
• ditr is liked
• prep is not

– when the corpus model predicts
prep, then
• prep is liked
• ditr is not

–  when the corpus model predicts
both, both are liked

• the multifactorial corpus model
receives very strong support

Results of the experiment

Stefan Th. Gries
University of California, Santa Barbara
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• For many of the tools or methodological proposals 
made in the course of this week, supportive 
experimental evidence has been presented

• ideally, we would always try to seek this type of 
converging evidence
– from experiments for corpus data
– from corpus data for experiments
– with different methodologies and data sets within each 
of these two types of data

• this is a lot of work and not without its own 
problems (cf. Arppe et al. 2011), but it ensures 
replicable progress with regard to our analysis of 
(hopefully) falsifiable hypotheses

• and that in turn is the only guarantee that 
cognitive linguistics will evolve further as a truly 
empirical and interdisciplinary science

To sum up

Stefan Th. Gries
University of California, Santa Barbara
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Thank you!
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