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Abstract 

Results in the recent literature suggest that multisensory integration in the brain follows the rules of Bayesian inference. 

However, how neural circuits can realize such inference and how it can be learned from experience is still the subject of 

active research. The aim of this work is to use a recent neurocomputational model to investigate how the likelihood and 

prior can be encoded in synapses, and how they affect audio-visual perception, in a variety of conditions characterized by 

different experience, different cue reliabilities and temporal asynchrony. The model considers two unisensory networks 

(auditory and visual) with plastic receptive fields and plastic crossmodal synapses, trained during a learning period. 

During training visual and auditory stimuli are more frequent and more tuned close to the fovea. Model simulations after 

training have been performed in crossmodal conditions to assess the auditory and visual perception bias: visual stimuli 

were positioned at different azimuth (±10° from the fovea) coupled with an auditory stimulus at various audio-visual 

distances (±20°). The cue reliability has been altered by using visual stimuli with two different contrast levels. Model 

predictions are compared with behavioral data. Results show that model predictions agree with behavioral data, in a 
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variety of conditions characterized by a different role of prior and likelihood. Finally, the effect of a different unimodal 

or crossmodal prior, re-learning, temporal correlation among input stimuli, and visual damage (hemianopia) are tested, to 

reveal the possible use of the model in the clarification of important multisensory problems. 
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Supplementary Material 

 

A. Mathematical Description of the Neural Network 

 

1. Basal Structure of the Network 

The neural network model consists of two chains of N unisensory neurons (Fig. 1, upper panel). Each 

neuron codes for a particular spatial position in its modality. Moreover, each chain is topologically 

organized, i.e., proximal neurons code for proximal positions. In the following, we will denote with 

a first subscript the particular area (auditory or visual) and with a second subscript, after a comma, 

the neuron position within the area.  

Each neuron receives three different kinds of inputs: a sensory input from the environment (say 

u), a lateral input from neurons of the same modality (say l)  and a cross-modal input from neurons 

of the other modality (say c). The global input (equal to the sum of the previous three contributions) 

is then passed through a sigmoidal relationship,  ( ) , which accounts for the presence of a lower 

threshold and upper saturation in neuron activity, and a first-order low-pass filter with time constant , 

which accounts for the neuron integrative capacity.  

Hence, for the generic k-th neuron in the modality S (S = A or V for the auditory and visual 

modalities, respectively) we can write 
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Where kSy ,  represents the neuron output, and the sigmoidal relationship is described by the following 

equation 

( )
( )( )0exp1
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xxs
x
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=          (S2) 

s and x0 are parameters, which set the slope and the position of the sigmoidal relationship. According 

to Eq. (2), the neuron output activity is normalized between 0 and 1 (zero means a silent neuron, one 

a maximally activated neuron).  

It is worth noting that, for the sake of simplicity, we used the same parameters (, s and x0) for all 

neurons independently of their modality. This choice was adopted to minimize the number of model 

assumptions.  

The expression for the sensory input is computed as the scalar product of the sensory representation 

of the stimulus (i.e., the vector T

NSkSSS iiiiI S ] [ ,,2,1, =  ) and the neuron receptive field (i.e., the 

vector 
T
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We assumed that the neuron receptive field, 
kSR ,

, has initially a large extension, described with a 

Gaussian function, and then progressively shrinks during training, to fit the width of the external input 

(see section “Training the network”). 

The lateral input is computed as follows 
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where 
kj  represents a lateral intra-area synapse connecting the presynaptic neuron j to the post 

synaptic neuron k in the same area. Here we used the classical Mexican-hat arrangement:  a neuron 

is excited by proximal neurons in the same area, and inhibited by more distal ones 
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where inexinex  ,,,  are parameters which set the strength and width of the excitatory and inhibitory 

portions of the Mexican hat. In particular, we have  inexinex      and    . Moreover,  ( )kjd  ,  

represents the distance between neurons’ preferred positions, i.e. 

 
( ) kjkjd  −=,

           (S6) 

It is worth noting that we used the same expression of lateral synapses (Eq. (S5)) in both the auditory 

and visual areas, to limit the number of model assumptions. 

Finally, the cross-modal term in Eq. (1) is computed as the convolution of the vector of cross 

modal synapses and the activity in the other unisensory area, i.e. 

QSVAQVASywc
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  with   or      or  with              
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,,,    (S7) 

where kjSQw ,  represents a cross-modal synapse from the pre-synaptic neuron j in the area Q to the 

post-synaptic neuron k in the area S. We assumed that the cross-modal synapses are initially 

ineffective and are progressively reinforced during the training phase.  

 

2. Training the Network  

Starting from the initial basal value of synapses, the network has been trained during a training period 

in which the sensory input representations (i.e., IA and IV) have been given with a random distribution.  
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The synapses describing the receptive field, kjSr , , and those describing the cross-modal link 

between the two areas, kjSQw , , have been trained using a learning rule with a classical Hebbian 

potentiation factor and a decay term. We can write, in scalar form 

( )   ,,,, kjSjSkSkjS riyr −=     with   S = A, V    (S8) 

( )     ,,,, kjSQjQkSkjSQ wyyw −=    with   S = A, V    Q = A, V Q ≠ S  (S9) 

Eqs. (8) and (9) have been applied, at each step, using the final steady state values of the neuron 

output (i.e., when transient phenomena are exhausted).  

At the beginning of training all cross-modal synapses are assumed equal to zero. Conversely, the 

receptive-field synapses have a broad spatial extension, and moderate amplitude, identical for the two 

modalities, i.e., 
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where r0 sets the initial strength of the receptive field, and R  establishes its initial spatial extension 

(we assume VRAR     and   i.e., a wide initial receptive fields) . Of course, Eq. (10) holds only 

at the first step of training. 

 

3. Probability Distribution and Spatial Accuracy of the Inputs  

According to the previous section, we assumed that the sensory inputs are composed of a 

deterministic term, which represents the spatial distribution of the input, centered on the stimulus 

spatial position, and a Gaussian white noise term (zero mean value and assigned standard deviation). 

Hence 
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 where S  represents the spatial position of the stimulus, 
StrengthSi ,

 is the stimulus strength in the 

absence of noise, and S  is the standard deviation of the spatial representation.  According to 

physiology, we assumed that the visual inputs are spatially more accurate than the auditory ones, 

hence we set AV   . Conversely, we assumed that the standard deviation of noise (say S ) is a 

given fraction of the input strength, to set the signal to noise ratio (see Table 1 in the text). 

In order to simulate the presence of better acuity at the center, and reduced acuity at the periphery, 

we assumed that the SDs of the visual and auditory inputs increase with the eccentricity of the 

stimulus.  

The expression of V has been taken from an empirical curve on visual acuity by Dacey (1993) 

(see also Ursino et al., 2017 for more details). By denoting with VVe  =   the eccentricity with respect 

to the fovea, we have 

( ) ( )32

0  00022.0 022.0 058.0
60

3
VVV eee  e VVV −++=


             (S12) 

0V  represents the SD of the visual inputs at the fovea (i.e., at zero eccentricity). We used the same 

value as in the previous paper, i.e. 0V = 4 deg. Finally, we use a parameter,  to adapt the function 

so that, V ranges between 4 deg, at 0 eccentricity, to about 12 deg at maximum eccentricity. 

The auditory acuity also decreases from the center to the periphery, although it is difficult to 

quantify this effect being influenced by many factors, such as the stimulus intensity and frequency 

(Middlebrooks and Green, 1991; Wood and Bizley, 2015). However, this effect is less evident and of 

smaller entity compared with the visual one (Perrott and Saberi, 1990). Hence, we used a simpler 

linear relationship, assuming that 0A  linearly increases from about 20 deg at the fovea to 30 deg at 

the periphery: 

( ) 90100 AA e  e AA +=                     (S13) 
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with 200 =A   and AAe =  is the eccentricity of the auditory position with respect to the head center. 

 

The positions of the two stimuli (i.e., A  and V  in Eq. (S11)) have been randomly generated from 

the prior probability distribution described below. 

 

We assume that both the visual and auditory input have a greater probability close to the fovea, 

and smaller probability at the periphery. This corresponds to have a non-uniform prior in visual 

unisensory conditions. The following probabilities have been used to generate the position of the 

visual and auditory inputs during training. 

Visual unisensory prior: the visual position follows a Gaussian distribution, centered at the fovea. 

Hence 
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The standard deviation sV (which here plays the role of a space constant) has been set at 7 deg; i.e., 

the visual stimuli becomes very rare at ±20 deg eccentricity.  

Auditory unisensory prior: the auditory position follows a Gaussian distribution, centered at 

the head center. 
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The standard deviation is assumed higher than in the visual case: we have sA = 30 deg assuming that, 

head movements in auditory unimodal conditions are less efficient than eye movement in visual 

unimodal conditions to maintain the stimulus close to the center.  

Cross modal prior: in the cross modal case during training, we assumed that the visual and 

auditory inputs originate from independent causes with a given probability (say ) but are produced 

by the same cause, hence originate from proximal spatial positions, with the complementary 
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probability (1 – ). According to the Bayes rule, the joined prior probability can be computed from 

knowledge of the individual probability of one stimulus, and the conditional probability of the other. 

A problem is whether, in cross modal conditions, the distribution is dominated by the visual prior 

(more sharply close to the center) or by the auditory one (less sharply close to the center). We assumed 

that, in 50% of cases, the cross-modal stimuli follow the visual distribution and in the other 50% of 

cases follow the auditory one. Hence 

( ) ( ) ( ) ( ) ( )AVAVVAV ppppp A  5.05.0, +=                         (S16) 

where we used equations (S14) and (S15) for the visual and auditory priors, and the following 

expression for the conditional probability  
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In writing Eq. (S17) we assumed that the conditional probability is computed as the weighted sum of 

the prior unimodal distribution, reflecting the moderate possibility that the two stimuli are 

independent, and a second term, ,  reflecting the probability that the 

auditory and visual events are originated from the same source. 

As in the previous work, we used a value of space constant sAV = 1 deg, assuming a small audio-visual 

distance when the two stimuli originate from the same source.  

 

References 

Dacey, D.M. (1993) The mosaic of midget ganglion cells in the human retina. Journal of Neuroscience, 
13(12), pp. 5334-5355. 

Middlebrooks, J.C. and Green, D.M. (1991) Sound localization by human listeners. Annual review of 
psychology, 42 (1), pp. 135-159. 

Perrott, D.R. and Saberi, K. (1990) Minimum audible angle thresholds for sources varying in both elevation 
and azimuth. The Journal of the Acoustical Society of America, 87(4), pp. 1728-1731. 

( )













−

2

2

2 2

,
exp

 2

1

AVAV
s

d

s

VA 





9 
 

Ursino, M. et al. (2017a) Development of a Bayesian Estimator for Audio-Visual Integration: A 
Neurocomputational Study. Frontiers in computational neuroscience, 11, 89. 

Wood, K.C. and Bizley, J.K. (2015) Relative sound localisation abilities in human listeners. The Journal of the 
Acoustical Society of America, 138(2), pp. 674-686. 

  



10 
 

B. Further Results 

 

1. Cross-modal Prior 

 

 

Figure S1. 2D color map of the joint cross-modal probability (i.e., Supplementary Eq. (16)) obtained 

using  = 0.5 (50% probability of independent inputs in cross-modal conditions), sV = 7 deg (standard 

deviation of the visual unisensory prior), sA = 30 deg ((standard deviation of the visual unisensory 

prior) and sAV = 1 deg (standard deviation of the conditioned probability in case of stimuli originating 

from the same cause).  
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2. Correlation among Experimental and Model Data 

 

Figure S2. Correlation among the experimental and model values of the auditory bias (upper line) 

and the visual bias (bottom line), evaluated in the high contrast condition using all data available 

(first column) and considering just the cases with C = 1 (second column) and C = 2 (third column). 

In the figures, only data simultaneously available from both the experimental conditions and model 

simulations are reported. These data are taken from the six panels in Fig. 5 (for what concerns the 

auditory bias) and from the six panels in Fig. 6 (for what concerns the visual bias). The value of the 

correlation coefficient is reported in each panel.  
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Figure S3. Correlation among the experimental and model values of the auditory bias (upper line) 

and the visual bias (bottom line), evaluated in the low contrast conditions using all data available 

(first column) and considering just the cases with C = 1 (second column) and C = 2 (third column). 

In the figures, only data simultaneously available from both the experimental conditions and model 

simulations are reported. These data are taken from the six panels in Fig. 7 (for what concerns the 

auditory bias) and from the six panels in Fig. 8 (for what concerns the visual bias). The value of the 

correlation coefficient is reported in each panel.  
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3. Sensitivity Analysis at Low-contrast 

 

 

Figure S4. Dependence of model results on the stimuli experienced during training (i.e., on the prior 

probability) in low-contrast conditions. The upper panels show the bias in the perceived position of 

the auditory stimulus; the bottom panels the bias in the visual perception. The meaning of lines is the 

same as in Fig. 9. The first column was obtained after Training1 (that is the same used in Figs. 2-8). 

The second column was obtained after a different training (Training2) characterized by a larger 

spatial arrangement of visual stimuli around the fovea. The third column was obtained after 

Training3, characterized by a smaller percentage of cross-modal inputs.  
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4. Synapse Changes during Re-learning  

 

 

Figure S5. An example of how cross-modal synapses change during re-learning from a condition 

with a standard deviation of the visual unisensory prior as large as sV = 30 deg, to a condition with sV 

= 7 deg (that is the same re-learning illustrated in Fig. 11 of the text). The upper line represents 

synapses entering into an auditory neuron from all visual neurons in the visual net. The bottom line 

represents cross modal synapses entering into a visual neuron from all auditory neurons in the 

auditory net. The green line represents the synapse distribution in the mature configuration before re-

learning, whereas the red line is the synapse distribution after re-learning. Gray lines are examples of 

iterations during the re-learning. As for cross-modal synapses entering auditory neurons, it is evident 

a reinforcement of the cross-modal input close to the fovea. As for cross-modal synapses entering 

visual neurons, it is evident  a shift of the cross-modal input toward the fovea at intermediate 

azimuthal positions, and a reinforcement of the visual cross-modal input at more peripheral azimuthal 

locations.   
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5. Additional Simulations with the Lesioned Network   

 

Figure S6. The lesioned network (90% of damaged neurons in the right visual hemifield) was used 

to replicate an experiment similar to that performed in hemianopic patients (Leo et al., 2008). 

Simulated results are shown in the upper plots and in vivo data are redrawn in the lower plots. In the 

network, a visual stimulus was applied either at –10° (intact hemifield) or at +10° (in the lesioned 

hemifield) and paired with an auditory stimulus applied at the same spatial position (SP) or at 16° 

and 32° of spatial disparity (DP16, DP32). The auditory stimuli were presented in unimodal 

conditions (A), too. The simulations were performed using a visual stimulus with strength  18, an 

auditory stimulus with strength 36, and in noisy condition (average values are displayed). Plots in the 

left column show the absolute localization error (absolute difference between the perceived auditory 

location and the real auditory location) computed in each condition (A, SP, DP16 and DP32) 

separately for the visual stimulus in the intact and damaged hemifield. Plots in the right column show 

the percentage of auditory bias [100*(perceived auditory location minus the real auditory location) / 

(actual visual-auditory disparity)] in DP16 and DP32 conditions (collapsed together) for the visual 

stimulus in the intact and damaged hemifield. According to the network (upper plots), a visual 

stimulus in the intact hemifield slightly reduces the auditory localization error in SP condition and 

strongly increases auditory mislocalization in DP condition, producing a high ventriloquism effect; 

conversely, a visual stimulus in the lesioned hemifield has only a weak impact on auditory 

localization error, and the ventriloquism effect radically declines. These network outcomes display 

good agreement with the in vivo data (lower plots). 

 


