On the Timing of Signals in Multisensory Integration and Crossmodal Interactions: A Scoping Review

Philip Sanders^{1,2,3}, Benjamin Thompson^{2,4,5}, Paul Corballis^{2,6} and Grant Searchfield^{1,2,3,*}

¹Section of Audiology, University of Auckland, Auckland, New Zealand

²Centre for Brain Research, University of Auckland, New Zealand

³ Brain Research New Zealand – Rangahau Roro Aotearoa, New Zealand

⁴ School of Optometry and Vision Science, University of Auckland, Auckland, New Zealand

⁵ School of Optometry and Vision Science, University of Waterloo, Waterloo, Canada

⁶Department of Psychology, University of Auckland, Auckland, New Zealand Received 17 June 2018; accepted 24 April 2019

Abstract

A scoping review was undertaken to explore research investigating early interactions and integration of auditory and visual stimuli in the human brain. The focus was on methods used to study low-level multisensory temporal processing using simple stimuli in humans, and how this research has informed our understanding of multisensory perception. The study of multisensory temporal processing probes how the relative timing between signals affects perception. Several tasks, illusions, computational models, and neuroimaging techniques were identified in the literature search. Research into early audiovisual temporal processing in special populations was also reviewed. Recent research has continued to provide support for early integration of cross-modal information. These early interactions can influence higher-level factors, and vice versa. Temporal relationships between auditory and visual stimuli influence multisensory perception, and likely play a substantial role in solving the 'correspondence problem' (how the brain determines which sensory signals belong together, and which should be segregated).

Keywords

Temporal principle, multisensory integration, cross-modal interactions, temporal ventriloquism, the correspondence problem

* To whom correspondence should be addressed. E-mail: <u>g.searchfield@auckland.ac.nz</u>

Supplementary Material

Table S1.

Chart of studies that met the criteria for inclusion in the scoping review.

Authors	Title	Aims/Concepts	Area of interest	Results
(Year)				
Spence and	Multisensory	Review studies examining	Perception of	A moving TBW and temporal ventriloquism
Squire (2003)	integration: maintaining	how the perceptual system	synchrony.	may account for differences in the arrival time
	the perception of	accounts for differences in		of inputs to different senses. Suggest more
	synchrony.	the arrival time of inputs to		research is needed to examine the underlying
		different senses to produce		causes of individual differences in the
		the perception of synchrony.		perception of multisensory synchrony.

Calvert and Multisensory Briefly cover MSI concepts; MSI Race models of the RTE largely replaced with Thesen (2004) integration: Critically review co-activation models. Stimulus and taskneuroimaging methodological neuroimaging techniques techniques. related factors mediate crossmodal approaches and used in MSI research; Review Redundant target interactions. MSI at early and late stages of emerging principles in effect. processing utilizes a parallel network of research on attention and the human brain. cross-modal binding. bidirectional connections. MSI cell responses in cerebral cortex are less studied than in SC. Response properties vary between these parts of the brain and may subserve different functions. Neuroimaging strategies to identify crossmodal interactions include matching tasks, superimposition of activity maps from similar tasks in different modalities, and tasks designed to tap crossmodal integration.

Different networks underly different tasks. PET and fMRI are suitable for localization of multisensory regions. EEG and MEG are suitable for studying time courses of multisensory processes. Attention modulates multisensory processes. Suggest future research combine haemodynamic and EEG/MEG data to understand MS processes and take into account task-related effects and attention.

King (2005)	Multisensory	Examine processing	TBW.	TBW varies depending on distance. Review
	integration: strategies	strategies that allow the		evidence that this is based on reverb cues
	for synchronization.	perception of synchrony from		rather than intensity (loudness).
		signals of various modalities		As source distance increases, auditory
		that arrive, are tranduced, and		stimulus must be delayed as a function of the
		are processed at different		additional sound travel time to bind with the
		speeds in the sensory sytem.		visual stimulus.
				Temporal relationships between bound stimuli
				can be recalibrated with training. Suggests that
				this could be a way to investigate the
				adaptability of the brain.
Musacchia and	Neuronal mechanisms,	Describe the circuits that	MSI in auditory	Multisensory integration occurs even at low
Schroeder	response dynamics and	underlie multisensory	cortex.	levels of processing in the auditory system.
(2009)	perceptual functions of	convergence and		This challenges the traditional hierarchical

	multisensory	physiologically feasible time		view of processing.
	interactions in auditory	windows of integration in		
	cortex	auditory cortex.		
Recanzone	Interactions of auditory	Review studies that use	MSI and	A change in the spatial and/or temporal
(2009)	and visual stimuli in	illusions to examine	illusions.	relationships between auditory and visual
	space and time	multisensory processing of		stimuli can produce illusions. The 3 key
		AV stimuli.		parameters that affect the strength of an
				illusion are compellingness, timing, and spatial
				disparity. Illusions and their after effects can
				be used to study perception and neural
				mechanisms underlying MS integration. The
				modality appropriateness hypothesis and
				bayesian probabilty models of MSI are both
				supported by illusion studies. Neuroimaging

studies and single neuron studies reviewed were limited by technologies not yet equipped to directly link illusions to underlying mechanisms.

Vroomen and	Perception of	Review studies that examined	Perception of	Very similar to book chapter (Keetels &
Keetels (2010)	intersensory synchrony:	the perception of synchrony	synchrony.	Vroomen 2012) below.
	A tutorial review	between the senses and key		
		issues in intersensory timing.		
Fujisaki et al.	Multisensory timing	Review multisensory aspects	MSI aspects in	Review factors influencing temporal
(2012)		in temporal perception,	temporal	judgements such as attention, temporal
		focusing on temporal	perception.	structure, modality, implied causality,
		judgements between		distance, and recalibration. Cross-modal

		modalities, and cross-modal		temporal judgements appear to be result from
		influences on within-modality		complex processing at various stages. The
		judgements.		authors suggest a multidisciplinary approach
				to understanding multisensory temporal
				perception.
Keetels and	Perception of synchrony	Review studies that examined	Perception of	TOJ and SJ tasks generally used for study of
Vroomen	between the senses	the perception of synchrony	synchrony.	the perception of synchrony but produce
(2012)		between the senses and key		different values for the TBW. PSS and JND
		issues in intersensory timing.		measures are affected by other factors and
				each have their own pros and cons. The brain
				may deal with intersensory time differences b
				any or all of the following: TBW,
				compensation for external factors (e.g.
				distance), recalibration, and temporal

				ventriloquism. Debate as to whether
				perception of synchrony is automatic or not -
				authors think it is when stimuli are salient.
				Neural substrates not clear but most likely a
				network includng the SC and STS.
				Intersensory timing is flexible and adaptive.
Spence (2013)	Just how important is	Assess when spatial	Spatial principle	The spatial principle of MSI developed from
	spatial coincidence to	coincidence of multimodal	of MSI.	electrophysiological studies on animal
	multisensory	stimuli produces behavioural		neurons. Translating this principle to human
	integration? Evaluating	enhancements.		behaviour appears to be more complex.
	the spatial rule.			Support for the spatial rule comes from studies
				where the task requires an orienting or other
				spatial response, or spatial attention. Temporal

judgement and target identification tasks

				generally do not support the spatial rule. Multisensory processing may include parallel "what" and "where" processing streams, similar to those described in unisensory research.
Van Atteveldt et al. (2014)	Multisensory integration: flexible use of general operations.	Review previous research to illustrate proposal that MSI is governed by the flexible use of a few general integrative operations.	Oscillatory phase resetting, divisive normalization.	Previous research suggests that the 3 principles of MSI are task, stimulus and/or context dependent. 2 canonical integrative operations, oscillatory phase resetting and divisive normalization, are proposed to work in concert to adaptively integrate multimodal stimuli.

Chan et al.	Temporal integration of	Review studies that examine	Multisensory	SJ and TOJ tasks produce similar TBW size
(2016)	multisensory stimuli in	the role of MS temporal	temporal	estimates in ASD groups as in control groups.
	autism spectrum	integration in ASD. Explain	integration in	Studies using the SIFI report a wider TBW in
	disorder: a predictive	mixed results from different	ASD.	ASD groups than in control groups. The
	coding perspective.	tasks/studies.		authors suggest that predictive coding may be
				able to explain these different results.
Chen and	Assessing the role of the	Review factors that may lead	The unity	The unity assumption describes when an
Spence (2017)	'unity assumption' on	to the unity assumption.	assumption.	observer considers that a number of different
	multisensory		Priors.	unimodal signals emanate from the same
	integration: a review,.			multisensory object or event. Paradigms used
				to investigate the unity assumption are
				discussed, including temporal ventriloquism.
				Whether the recent introduction of priors into
				computational models of MSI render the unity

assumption obsolete is discussed. The conclusion is that the unity assumption is still a hotly debated topic in the MSI literature, and priors may help to explain how it comes about. The authors update the definition of the unity assumption.

References

- Calvert, G. A. and Thesen, T. (2004). Multisensory integration: methodological approaches and emerging principles in the human brain, *J. Physiol. Paris*, **98**, 191–205.
- Chan, J. S., Langer, A. and Kaiser, J. (2016). Temporal integration of multisensory stimuli in autism spectrum disorder: a predictive coding perspective, J. Neural Transm., 123, 917–923.
- Chen, Y.-C. and Spence, C. (2017). Assessing the role of the 'unity assumption' on multisensory integration: a review, *Front. Psychol.*, 8, 445. doi: 10.3389/fpsyg.2017.00445
- Fujisaki, W., Kitazawa, S. and Nishida, S. (2012). Multisensory timing, in: *The New Handbook of Multisensory Processing*, B.E. Stein (Ed.), pp. 301–317, MIT Press, Cambridge, MA, USA.
- Keetels, M. and Vroomen, J. (2012). Perception of synchrony between the senses, in *The neural bases of multisensory processes*, M. M. Murray and M. T. Wallace (Eds), pp. 147–177, CRC Press/Taylor and Francis, Boca Raton, FL, USA.
- King, A. J. (2005). Multisensory integration: strategies for synchronization, *Curr. Biol.*, **15**, R339–R341.
- Musacchia, G. and Schroeder, C. E. (2009). Neuronal mechanisms, response dynamics and perceptual functions of multisensory interactions in auditory cortex, *Hear. Res.*, **258**, 72–79.
- Recanzone, G. H. (2009). Interactions of auditory and visual stimuli in space and time, *Hear. Res.*, **258**, 89–99.
- Spence, C. (2013). Just how important is spatial coincidence to multisensory integration? Evaluating the spatial rule, *Ann. N. Y. Acad. Sci.*, **1296**, 31–49.
- Spence, C. and Squire, S. (2003). Multisensory integration: maintaining the perception of synchrony, *Curr. Biol.*, **13**, R519–R521.

Van Atteveldt, N., Murray, M. M., Thut, G. and Schroeder, C. E. (2014).

Multisensory integration: flexible use of general operations. *Neuron*, **81**, 1240–1253.

Vroomen, J. and Keetels, M. (2010). Perception of intersensory synchrony: A tutorial review, *Atten. Percept. Psychophys.*, **72**, 871–884.