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• Frequency of form & their dispersion are important, 
but so is association/contingency (w/ function) – 
especially for learning, recall Ellis (2006):

• "'[l]anguage learning can be viewed as a statistical 
process requiring the learner to acquire a set of 
likelihood-weighted associations between construc-
tions & their functional/semantic interpretations"

• association quantifies what-if relations: what 
[happens] if [the context is like this]?

• "Learning, memory and perception are all affected by frequency, 
recency, and context of usage: […] The more times we experience 
conjunctions of features, the more they become associated in our minds 
and the more these subsequently affect perception and categorization" 
(Ellis, Römer, & O'Donnell 2016:45f.)

• in other words, association → correlation, → how 
much does knowing X help you predict Y?

• that's why "human learning is to all intents and purposes perfectly 
calibrated with normative statistical measures of contingency like r, 
χ2 and ΔP" (Ellis 2006:7)

What is the relevance of 
association/contingency?
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• For every, say, word co-occurring w/ cx 1, a 2x2 
table is created, from which many association 
measures (AMs) can be computed easily

• then, the words
can be ranked
according to their
association to cx1

• there has been a lot of discussion about which AM is 
'best' but some of this is purely academic – most 
widely-used measures can be derived from logistic 
regression
– G2, odds ratio, log odds ratio, MI, t, z, …
– other can't but are still very highly correlated with 
some of the above: pFYE, X2, …

How is association usually measured?
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• The following considerations are relevant to 
choosing an AM
– symmetry: is the AM supposed to be symmetric or not?

• nearly all AMs are: pFYE, LLR, X2, MI, t, z, log odds ratio …
• some are not: p(y|x), ΔP, …

– metric type: +effect –freq. vs +effect +freq
• the former: log odds ratio, the asymmetric ones above, …
• the latter: pFYE, LLR, X2, …

– frequency information: token vs token+type frequency
• the former: all but one
• the latter: lexical gravity G

• probably best settings in an ideal world:
– symmetry: no
– metric type: +effect
– (frequency: token+type)

• ideally dispersion would be included in some way
• let me suggest two measures for your consideration

– log odds ratio
– ΔP

How should association be measured?

What measures are typically used?
What are desiderata of AMs?
Two recommendations: log odds ratio & ΔP
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• The log odds ratio
– symmetric, +effect -frequency
– you compute

• the odds of one outcome in one condition/context
• the odds of the same outcome in the other condition/context
• you divide them and log
• maybe add 0.5 to all cells first to help w/ 0s

Why am I suggesting these two &
how is the log odds ratio computed?

Stefan Th. Gries
UC Santa Barbara & JLU Giessen

On association

What measures are typically used?
What are desiderata of AMs?
Two recommendations: log odds ratio & ΔP

762.2
yes no Totals

regard
yes 80 19 99
no 607 137958 138565

Totals 687 137977 138664

0.1318
0.0001

odds ratio 956.9618
log odds ratio 6.8638

G2= as-predicative

odds of r when a
odds of r when not a

7622
yes no Totals

regard
yes 800 190 990
no 6070 1379580 1385650

Totals 6870 1379770 1386640

0.1318
0.0001

odds ratio 956.9618
log odds ratio 6.8638

G2= as-predicative

odds of r when a
odds of r when not a

Introduction
Measures: briefest overview & recommendations

Collostructional case studies and examples
Concluding remarks



  

6

• ΔP
– asymmetric, +effect – frequency
– you compute

• the % of the outcome of interest in one condition/context
• the % of the outcome of interest in the other cond./context
• you subtract the former from the latter
• obviously, this can then be done in either direction

Why am I suggesting these two &
how is ΔPc→r computed?
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• The log odds ratio and ΔP are not affected if the 
frequencies go up much (eg by an order of magnitude, 
as exemplified above)

• to reiterate: many other AMs do not behave that way: 
they react to effect size
& frequency

• here's the most
widely-used one: G2

– in ditransitives
• The cat brought her a mouse

– in imperatives
• Kill the mouse!

– in verb-particle constructions
• He picked up the book      vs
He picked    the book up

Note what they share
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• The log odds ratio is symmetric, ΔP is not, ie
– the former cannot distinguish these collocations,
– the latter can

• of←course, at←least, for←instance, in←vitro, de←facto, …
• according→to, upside→down, instead→of, ipso→facto, …
• Sinn↔Fein, bona↔fide, …

• in the spoken part of the BNC, all of these have
– G2>178
– log odds ratio>5

• but why would such learned connections would be (as) 
symmetric? (Trautschold 1883, Cattell 1887)

• in fact, mismatches between corpus and psycho-
linguistic data might be in part due to overlooking 
the directionality of collocations

Note what they don't share
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• Given how ΔP is computed, it is
– correlated much w/ transitional probability p(x|y)
– only natural to ask whether it's different enough 
from p(x|y) to even make a difference

• Schneider (to appear): yes
– data: Switchboard NXT 2008 (642 phone conversations)
– dependent variable: hesitation placement in PPs
– predictors: a, ΔP→, TP→, ΔP←, TP←, MI, lex. grav. G
– statistical analysis: party::cforest
– results: many different results for the three kinds 
of PPs, but
• "it is mostly ΔP which outperforms transitional probability"
• this is true for both forward-directed measures and 
backwards at phrase boundaries

• ← measures are good predictors of collocation status when
w1 = function word & w2 = content word

• other major finding: lexical gravity G does very well!
• Dunn (2018): tuples of different ΔPs are useful

But is ΔP really worth it?
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• Collostructional analysis (CA) is an method based on 
the maybe most fundamental corpus linguistic 
assumptions: the distributional hypothesis
– "[i]f we consider words or morphemes A and B to be more 
different in meaning than A and C, then we will often 
find that the distributions of A and B are more 
different than the distributions of A and C. In other 
words, difference of meaning correlates with difference 
of distribution" (Harris 1970:785f.)

• CA is a straightforward extension of …
– of collocations: co-occurrence of words/lexical units
– to (one sense of) colligation: co-occurrence

• of words
• and patterns/constructions

Collostructional analysis
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• CA is a 'family' of 3 methods
– collexeme analysis

• co-occurrence of each of n words
• in/with 1 construction

– distinctive collexeme analysis
• co-occurrence of each of n words
• in/with 2 (or more) constructions

– co-varying collexeme analysis
• co-occurrence of words in 2 slots
of 1 construction

• for each 2x2 table, one com-
putes an assoc. measure to see
– which words like cx 1
– which words prefer which cx
– which words go together in cx
– based on the (ranks of) sorted
association measures (AMs)

• AMs most widely used:
– pFisher-Yates exact & G

2/LLR

Collostructional
analysis
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cx 1: y cx 1: n Σ
word 1: y 80 200 280
word 1: n 1000 … …

Σ 1080 … Σ
&

cx 1: y cx 1: n Σ
word 2: y 60 310 370
word 2: n 1020 … …

Σ 1080 … Σ

cx 1 cx 2 Σ
word 1: y 150 80 230
word 1: n 930 720 1650

Σ 1080 800 1880
&

cx 1 cx 2 Σ
word 2: y 60 310 370
word 2: n 1020 490 1510

Σ 1080 800 1880

word 2: y word2: n Σ
word 1: y 40 240 280
word 1: n 330 470 800

Σ 370 710 1080
&

word 3: y word3: n Σ
word 1: y 20 260 280
word 1: n 180 620 800

Σ 200 880 1080

On association
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• Let's look at a few examples of CA, where we
– keep frequency and contingency separate

• using (log2) of the observed co-occurrence frequency of 
verbs & a construction

• using an association measure that doesn't include the 
observed co-occurrence frequency

– add dispersion to the mix
• computing the dispersion of, say, verbs in the construction 
against the distribution of verbs in general

• examples
– collexeme analysis: ditransitive
– collexeme analysis: imperative
– distinctive collexeme anal.: verb-particle constructions

• things not to be discussed (much) here:
– keeping directions of association separate

• we could use ΔPs as AMs (ΔPvfromc & ΔPcfromv)
– no entropy
– no polysemy

Addressing at least some of
the above-mentioned problems
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• Data: ICE-GB
– 1820 ditransitives
– 88 different verbs

• with freqs between
1 and 566

• step 1: frequency
– surprisingly good:
give, tell, ask,
show, send, offer,
but then get …

• step 2: association
w/ G2/LLR, confla-
ting freq & effect
– also good but not
that distinctive

• step 3: keeping
frequency & association separate: much more 
informative (esp. if you want to be cogn. realistic)

A collexeme analysis of
the ditransitive: steps 1-3
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A collexeme analysis of
the ditransitive: step 4
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A collexeme analysis of
the ditransitive: step 5
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• Data: ICE-GB
– 2083 imperatives
– 314 different verbs

• with freqs between
1 and 202

• step 1: frequency
– surprisingly good:
see, let, look,
take, … have, …, be

• step 2: association
w/ G2/LLR, confla-
ting freq & effect
– also good, but

• huge impact of freq
on repelled verbs

• fold & process?
• step 3: keeping
frequency & association separate: much more 
informative

A collexeme analysis of
the imperative: steps 1-3
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A collexeme analysis of
the imperative: step 4
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• Data: ICE-GB
– 1164 VPCs
– 835 different verbs

• with freqs between
1 and 31

• step 1: frequency
– hard to evaluate,
seems reasonable(?)

• step 2: association
w/ G2/LLR, confla-
ting freq & effect
– seems very similar
w/ ranking changes

• step 3: keeping
frequency &
association separate:
much more informative

A distinctive collexeme analysis of
verb-particle constructions: steps 1-3
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A distinctive collexeme analysis of
verb-particle constructions: step 4
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• Collostructional analysis has been widely applied
– diachronic & synchronic construction studies
– first & second/foreign language acquisition
– psycholinguistic studies of priming, …

• while its implementation may need to vary between 
applications, the association logic per se is sound

• so don't believe all sorts of nonsense about it
– no, the use of AMs – p-based or otherwise – is not a big 
significance testing problem but maybe a conflation one
• conflation of effect & frequency
• conflation of direction of association

– no, the other-other cell (d) is not a huge problem –
you estimate it reasonably

– no, semantics doesn't go into
it, but it might emerge from it

– so, if you criticize it for something
• you better understand it first
• provide alternative measures that are as good or better
• then we can talk …

Concluding remarks re collostructions
(from Gries 2012, 2015)
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yes 80 (a) 19 (b)
no 607 (c) 137958 (d)
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• In terms of learning, acquisition, & processing, 
there's little that's more important than 
association

• association measures quantify
– what-if?
– if …, then …

• different measures are available,
– all based on frequency of occurrence and co-occurrence
– but differing in terms of implementation & implications
– which shows that 'frequency' per se is versatile,
if used properly and non-anxiously

• thus and not forgetting all previous 'lessons'
– include frequencies of occurrence & co-occurrence
– be aware of direction of association
– be aware of dispersion
– be aware of whether you can or cannot tolerate the 
information loss resulting from conflation –
if yes, conflate properly

Concluding remarks re association
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Thank you!

http://tinyurl.com/stgries
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