On association

Stefan Th. Gries UC Santa Barbara & JLU Giessen http://tinyurl.com/stgries Introduction

Measures: briefest overview & recommendations Collostructional case studies and examples Concluding remarks

What is the relevance of association/contingency?

 Frequency of form & their dispersion are important, but so is association/contingency (w/ function) especially for learning, recall Ellis (2006): • "'[1]anguage learning can be viewed as a statistical process requiring the learner to acquire a set of likelihood-weighted associations between constructions & their functional/semantic interpretations" association quantifies what-if relations: what [happens] if [the context is like this]? · "Learning, memory and perception are all affected by frequency, recency, and context of usage: [...] The more times we experience conjunctions of features, the more they become associated in our minds and the more these subsequently affect perception and categorization" (Ellis, Römer, & O'Donnell 2016:45f.) \cdot in other words, association \rightarrow correlation, \rightarrow how much does knowing X help you predict Y? that's why "human learning is to all intents and purposes perfectly calibrated with normative statistical measures of contingency like r, χ^2 and $\Delta P''$ (Ellis 2006:7)

On association

Stefan Th. Gries UC Santa Barbara & JLU Giessen

2 28

How is association usually measured?

 For every, say, word co-occurring w/ cx 1, a 2x2 table is created, from which many association measures (AMs) can be computed easily

 then, the words can be ranked according to their association to cx1

	c 1	other	Sum
w1	80	200	280
other	1000		
Sum	1080		sum

m		c 1
0	w2	60
	other	1020
m	Sum	1080
		-

other

310

Sum

370

sum

	c 1	other	Sur
w3	40	420	46
ober	1040		
Sum	1080		sur

 there has been a lot of discussion about which AM is 'best' but some of this is purely academic - most widely-used measures can be derived from logistic regression

- $G^{\tilde{z}}$, odds ratio, log odds ratio, *MI*, *t*, *z*, ...

On association

- other can't but are still very highly correlated with some of the above: p_{FYE} , X^2 , ...

How should association be measured?

 \cdot The following considerations are relevant to choosing an AM

- symmetry: is the AM supposed to be symmetric or not?
 - nearly all AMs are: p_{FYE} , LLR, X^2 , MI, t, z, log odds ratio ...
 - · some are not: p(y|x), ΔP , ...
- metric type: +effect -freq. vs +effect +freq
 - \cdot the former: log odds ratio, the asymmetric ones above, ...
 - · the latter: p_{FYE} , *LLR*, X^2 , ...
- frequency information: token vs token+type frequency
 - \cdot the former: all but one
 - \cdot the latter: lexical gravity G
- probably best settings in an ideal world:
 - symmetry: no
 - metric type: +effect
 - (frequency: token+type)

ideally dispersion would be included in some way

- let me suggest two measures for your consideration
 log odds ratio
 - ΔP

Why am I suggesting these two & how is the log odds ratio computed?

\cdot The log odds ratio

- symmetric, +effect -frequency
- you compute
 - the odds of one outcome in one condition/context
 - \cdot the odds of the same outcome in the other condition/context
 - \cdot you divide them and log
 - \cdot maybe add 0.5 to all cells first to help w/ Os

$G^2 = 762.2$		<i>as</i> -predica ¹		$G^2 = 7622$	as-predicative		
		yes			yes	no	Totals
roaard	yes	80	19	d 99 yes	800	190	990
regaru	no	607	137958	13856 5 10	6070	1379580	1385650
	Totals	687	137977	138 6764 tals	6870	1379770	1386640
odds of <i>r</i> when <i>a</i> odds of <i>r</i> when not <i>a</i> odds ratio log odds ratio		0.1318	odds of <i>r</i> when <i>a</i> 0.00001s of <i>r</i> when not <i>a</i> odds9516a196618 log oddss &63818io		0.1318	0.0001	956.9618 6.8638

Stefan Th. Gries UC Santa Barbara & JLU Giessen

Why am I suggesting these two & how is $\Delta P_{c \rightarrow r}$ computed?

$\cdot \Delta P$

- asymmetric, +effect - frequency

- you compute
 - the % of the outcome of interest in one condition/context
 - the % of the outcome of interest in the other cond./context
 - \cdot you subtract the former from the latter
 - \cdot obviously, this can then be done in either direction

$G^2 = 762.2$		<i>as</i> -pred	lica	$G^2 = 7622$	<i>as</i> -predicative		
		yes			yes	no	Totals
roaard	yes	80	19	a 99 yes	800	190	990
regaru	no	607	137958	໌ 13856 ົ ກ໐	6070	1379580	1385650
	Totals	687	137977	138 664 tals	6870	1379770	1386640
% of <i>r</i> when <i>a</i> % of <i>r</i> when not <i>a</i> Delta <i>P</i>		0.1164	% of <i>r</i> when <i>a</i> 0.00010f <i>r</i> when not <i>a</i>		0.1164	0.0001	
			I	Del@ta1 <i>1</i> 63			0.1163

Why am I suggesting these two & how is $\Delta P_{r \rightarrow c}$ computed?

$\cdot \Delta P$

- asymmetric, +effect - frequency

- you compute
 - the % of the outcome of interest in one condition/context
 - the % of the outcome of interest in the other cond./context
 - \cdot you subtract the former from the latter
 - \cdot obviously, this can then be done in either direction

$G^2 = 762.2$		<i>as</i> -predica		<i>G</i> ² =7622	<i>as</i> -predicative		
		yes			yes	no	Totals
roaard	yes	80	19	a <mark>99</mark> yes	800	190	990
regaru	no	607	137958	໌ 13856 ົກ໐	6070	1379580	1385650
	Totals	687	137977	138 664 tals	6870	1379770	1386640
% of a when r % of a when not r Delta P		0.8081	% of <i>a</i> when <i>r</i> 0.00%44of <i>a</i> when not <i>r</i>		0.8081	0.0044	
				Del@ta8@737			0.8037

7 विद्वे

Note what they share

· The log odds ratio and ΔP are not affected if the frequencies go up much (eg by an order of magnitude, as exemplified above) \cdot to reiterate: many other AMs do not behave that way: they react to effect size 3500 & frequency • here's the most 2500 widely-used one: G^2 3-squared/LLR - in ditransitives • The cat brought her a mouse 1500 - in imperatives • Kill the mouse! - in verb-particle constructions • He picked up the book 500 VS He picked the book up 0 R

Frequency

300

400

500

8 æ

200

100

On association

Stefan Th. Gries UC Santa Barbara & JLU Giessen

Note what they share

UC Santa Barbara & JLU Giessen

Ē

Note what they don't share

· The log odds ratio is symmetric, ΔP is not, ie

- the former cannot distinguish these collocations,
- the latter can
 - of←course, at←least, for←instance, in←vitro, de←facto, ...
 - according→to, upside→down, instead→of, ipso→facto, ...
 - Sinn⇔Fein, bona⇔fide, …
- in the spoken part of the BNC, all of these have $-G^2 > 178$
 - log odds ratio>5
- but why would such learned connections would be (as) symmetric? (Trautschold 1883, Cattell 1887)
- in fact, mismatches between corpus and psycholinguistic data might be in part due to overlooking the directionality of collocations

But is ΔP really worth it?

· Given how ΔP is computed, it is

- correlated much w/ transitional probability p(x|y)
- only natural to ask whether it's different enough from p(x|y) to even make a difference
- Schneider (to appear): yes
 - data: Switchboard NXT 2008 (642 phone conversations)
 - dependent variable: hesitation placement in PPs
 - predictors: $a, \Delta P \rightarrow$, TP \rightarrow , $\Delta P \leftarrow$, TP \leftarrow , *MI*, lex. grav. *G* - statistical analysis: party::cforest
 - results: many different results for the three kinds of PPs, but
 - \cdot "it is mostly ΔP which outperforms transitional probability"
 - this is true for both forward-directed measures and backwards at phrase boundaries

 - other major finding: lexical gravity G does very well!
- · Dunn (2018): tuples of different ΔPs are useful

11 कि

Measures: briefest overview & recommendations A collexeme analysis of the ditransitive Collostructional case studies and examples A collexeme analysis of the imperative Concluding remarks A distinctive collexeme analysis of verb-particle cxs

Collostructional analysis

 Collostructional analysis (CA) is an method based on the maybe most fundamental corpus linguistic assumptions: the distributional hypothesis
 "[i]f we consider words or morphemes A and B to be more

- different in meaning than A and C, then we will often find that the distributions of A and B are more different than the distributions of A and C. In other words, difference of meaning correlates with difference of distribution" (Harris 1970:785f.)
- \cdot CA is a straightforward extension of ...
 - of collocations: co-occurrence of words/lexical units
 - to (one sense of) colligation: co-occurrence
 - \cdot of words
 - \cdot and patterns/constructions

Measures: briefest overview & recommendations A collexeme analysis of the ditransitive Collostructional case studies and examples A collexeme analysis of the imperative Concluding remarks A distinctive collexeme analysis of verb-particle cxs

Collostructional analysis

CA is a 'family' of 3 methods collexeme analysis

- \cdot co-occurrence of each of *n* words
- \cdot in/with 1 construction
- distinctive collexeme analysis
 - \cdot co-occurrence of each of *n* words
 - in/with 2 (or more) constructions
- co-varying collexeme analysis
 - co-occurrence of words in 2 slots of 1 construction

for each 2x2 table, one computes an assoc. measure to see

- which words like cx 1
- which words prefer which cx
- which words go together in cx
- based on the (ranks of) sorted association measures (AMs)
- \cdot AMs most widely used:
 - $p_{\text{Fisher-Yates exact}}$ & G^2/LLR

On association

	cx 1: y	cx 1: n	Σ				
word 1: y	80	200	280				
word 1: n	1000						
Σ	1080		Σ				
	8	, K					
	cx 1: y	cx 1: n	Σ				
word 2: y	60	310	370				
word 2: n	1020						
Σ	1080		Σ				
	cx 1	cx 2	Σ				
word 1: y	150	80	230				
word 1: n	930	720	1650				
Σ	1080	800	1880				
&							
	cx 1	cx 2	Σ				
word 2: y	60	310	370				
word 2: n	1020	490	1510				
Σ	1080	800	1880				
	word 21 V	word2	~				
			20				
word 1: y	40	240	280				
word 1: n	330	470	800				
Σ	370	/10	T080				
	8	k					
	word 3: y	word3: n	Σ				
word 1: y	20	260	280				
word 1: n	180	620	800				
Σ	200	880	1080				

13

æ

Stefan Th. Gries UC Santa Barbara & JLU Giessen

Measures: briefest overview & recommendations A collexeme analysis of the ditransitive Collostructional case studies and examples A collexeme analysis of the imperative Concluding remarks A distinctive collexeme analysis of verb-particle cxs

Addressing at least some of the above-mentioned problems

Let's look at a few examples of CA, where we
 keep frequency and contingency separate

- using (log2) of the observed co-occurrence frequency of verbs & a construction
- \cdot using an association measure that doesn't include the observed co-occurrence frequency
- add dispersion to the mix
 - computing the dispersion of, say, verbs in the construction against the distribution of verbs in general
- \cdot examples
 - collexeme analysis: ditransitive
 - collexeme analysis: imperative

- distinctive collexeme anal.: verb-particle constructions

- things not to be discussed (much) here:
 - keeping directions of association separate
 - we could use ΔPs as AMs (ΔPv from c & ΔPc from v)
 - no entropy
 - no polysemy

Measures: briefest overview & recommendations A collexeme analysis of the ditransitive

Collostructional case studies and examples A collexeme analysis of the imperative Concluding remarks A distinctive collexeme analysis of verb-particle cxs

A collexeme analysis of the ditransitive: steps 1-3

• Data: ICE-GB tell - 1820 ditransitives ask - 88 different verbs \cdot with freqs between aet 1 and 566 • step 1: frequency - surprisingly good: pay give, tell, ask, buy show, send, offer, do but then get ... \cdot step 2: association w/ G^2 /LLR, conflating freq & effect - also good but not that distinctive • step 3: keeping frequency & association separate: much more informative (esp. if you want to be cogn. realistic) On association

Stefan Th. Gries

UC Santa Barbara & JLU Giessen

Measures: briefest overview & recommendations A collexeme analysis of the ditransitive

Collostructional case studies and examples A collexeme analysis of the imperative Concluding remarks A distinctive collexeme analysis of verb-particle cxs

A collexeme analysis of the ditransitive: steps 1-3

On association

UC Santa Barbara & JLU Giessen

16 क

Measures: briefest overview & recommendations A collexeme analysis of the ditransitive

Collostructional case studies and examples A collexeme analysis of the imperative Concluding remarks A distinctive collexeme analysis of verb-particle cxs

A collexeme analysis of the ditransitive: steps 1-3

Measures: briefest overview & recommendations A collexeme analysis of the ditransitive Collostructional case studies and examples A collexeme analysis of the imperative Concluding remarks A distinctive collexeme analysis of verb-particle cxs

A collexeme analysis of the ditransitive: step 4

On association

Stefan Th. Gries UC Santa Barbara & JLU Giessen

Measures: briefest overview & recommendations A collexeme analysis of the ditransitive Collostructional case studies and examples A collexeme analysis of the imperative Concluding remarks A distinctive collexeme analysis of verb-particle cxs

A collexeme analysis of the ditransitive: step 5

On association

Stefan Th. Gries UC Santa Barbara & JLU Giessen

Measures: briefest overview & recommendations A collexeme analysis of the ditransitive

Collostructional case studies and examples A collexeme analysis of the imperative Concluding remarks A distinctive collexeme analysis of verb-particle cxs

A collexeme analysis of the imperative: steps 1-3

• Data: ICE-GB see let - 2083 imperatives look take 314 different verbs qo aet \cdot with freqs between tell have 1 and 202 try be • step 1: frequency come make - surprisingly good: say do remember see, let, look, know give take, ... have, ..., be ask put \cdot step 2: association use listen w/ G^2 /LLR, conflakeep leave worry ting freq & effect wait hold - also good, but turn think huge impact of freq on repelled verbs fold note • fold & process? \cdot step 3: keeping

Frequency logged to the base of 2

frequency & association separate: much more informative Stefan Th. Gries On association UC Santa Barbara & JLU Giessen

Measures: briefest overview & recommendations A collexeme analysis of the ditransitive

Collostructional case studies and examples A collexeme analysis of the imperative

Concluding remarks A distinctive collexeme analysis of verb-particle cxs

A collexeme analysis of the imperative: steps 1-3

On association

Stefan Th. Gries UC Santa Barbara & JLU Giessen

Measures: briefest overview & recommendations A collexeme analysis of the ditransitive

Collostructional case studies and examples A collexeme analysis of the imperative Concluding remarks A distinctive collexeme analysis of verb-particle cxs

A collexeme analysis of the imperative: steps 1-3

UC Santa Barbara & JLU Giessen

Measures: briefest overview & recommendations A collexeme analysis of the ditransitive Collostructional case studies and examples A collexeme analysis of the imperative Concluding remarks A distinctive collexeme analysis of verb-particle cxs

A collexeme analysis of the imperative: step 4

On association

Stefan Th. Gries UC Santa Barbara & JLU Giessen

23

Measures: briefest overview & recommendations A collexeme analysis of the ditransitive Collostructional case studies and examples A collexeme analysis of the imperative Concluding remarks A distinctive collexeme analysis of verb-particle cxs

Frequency logged to the base of 2

On association

Stefan Th. Gries UC Santa Barbara & JLU Giessen

24 Ē

A distinctive collexeme analysis of verb-particle constructions: steps 1-3

25

A distinctive collexeme analysis of verb-particle constructions: steps 1-3

•	<pre>Data: ICE-GB - 1164 VPCs - 835 different verbs - with freqs between 1 and 31 step 1: frequency - hard to evaluate, seems reasonable(?) step 2: association w/ G²/LLR, confla- ting freq & effect - seems very similar w/ ranking changes step 3: keeping</pre>	get_up put_out turm_out put_up get_out play_out get_off bring_up sort_up put_NA have_out cut_up wipe_out give_away cut_down bring_forward open_up bring_in cut_off bring_about give_up fill_in build_up rule_out pick_up take_on set_up carry_out	Verb Particle Dirobj					
	trequency &		-60	-40	-20	0	20	
	association separat	1			Signed G-squared	- I/LLR		
	much more informati							
		۷C						

Verb DirObj Particle

40

26

A distinctive collexeme analysis of verb-particle constructions: steps 1-3

27 कि

A distinctive collexeme analysis of verb-particle constructions: step 4

Frequency logged to the base of 2

Stefan Th. Gries UC Santa Barbara & JLU Giessen

28

On association

Introduction More specifically on collostructions Measures: briefest overview & recommendations More generally on association Collostructional case studies and examples Concluding remarks

Concluding remarks re collostructions (from Gries 2012, 2015)

• Collostructional analysis has been widely applied

- diachronic & synchronic construction studies
- first & second/foreign language acquisition
 psycholinguistic studies of priming, ...
- while its implementation may need to vary between applications, the association logic per se is sound
 so don't believe all sorts of nonsense about it
 - no, the use of AMs p-based or otherwise is not a big significance testing problem but maybe a conflation one
 conflation of effect & frequency
 - \cdot conflation of direction of association
 - no, the other-other cell (d) is not a huge problem you estimate it reasonably as-predicative
 - no, semantics doesn't go *into* yes no yes 80 (a) 19 (b)
 - it, but it might *emerge from* it regard no 607 (c)
 - so, if you criticize it for something
 - \cdot you better understand it first
 - \cdot provide alternative measures that are as good or better
 - *then* we can talk …

On association

Stefan Th. Gries UC Santa Barbara & JLU Giessen 137958 (d)

Introduction More specifically on collostructions Measures: briefest overview & recommendations More generally on association Collostructional case studies and examples Concluding remarks

Concluding remarks re association

- In terms of learning, acquisition, & processing, there's little that's more important than association
- association measures quantify
 - what-if?
 - if ..., then ...
- \cdot different measures are available,
 - all based on frequency of occurrence and co-occurrence
 - but differing in terms of implementation & implications
 which shows that 'frequency' per se is versatile,
 - if used properly and non-anxiously
- thus and not forgetting all previous 'lessons'
 - include frequencies of occurrence & co-occurrence
 - be aware of direction of association
 - be aware of dispersion
 - be aware of whether you can or cannot tolerate the information loss resulting from conflation – if yes, conflate properly

Thank you! http://tinyurl.com/stgries