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what is the relevance of
association/contingency?

- Frequency of form & their dispersion are important,
but so 1s association/contingency (w/ function)
especially for learning, recall Ellis (2006):

- ""[1]anguage learning can be viewed as a statistical
process requiring the learner to acquire a set of
l1kelihood-weighted associations between construc-
tions & their functional/semantic interpretations”

- association quantifies what-1f relations: what
[happens] 1f [the context is 1like this]?

"Learning, memory and perception are all affected by frequency,
recency, and context of usage: [..] The more times we experience
conjunctions of features, the more they become associated in our minds
and the more these subsequent1y affect perception and categorization”
(E11is, Romer, & O'Donnell 2016:45f.)

- 1n other words, association - correlation, - how

much does know1ng X help you predict Y?

- that's why "human Tearning is to all intents and purposes perfectly
calibrated with normative statistical measures of contingency like r,
x2 and AP" (Ellis 2006:7)
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Introduction What measures are typically used?
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concluding remarks

How 1s association usually measured?

- For_every, say, word co-occurring w/ cx 1, a 2x2
table 1s created, from which many association
measures (AMs) can be computed easily

. t h en t h e wor d S c| other | Sum c| other | Sum c| other | Sum
) wl B0 20 | 280 wl 1] 3| 370 w3 40 470 | 460

can be ranked other [ 1000 ... | ... other | 1020 ... | ... %er 1040
acco r-d-l ng -to the-l r Sum | 1080 ... | sum Sum | 1080 ... | sum n | 1080 ... | sum

association to cxl _ _ _ _
- there has been a lot of d1scuss1on about which AM 1is

'best’ but some of this 1s purely academic - most
widely-used measures can be derived from logistic

regression

- G*, odds ratio, log odds ratio, mMI, t, Zz, ..

- other can't but are still very highly correlated with
some of the above: pre, X2,
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How should association be measured?

- The following considerations are relevant to
choosing an AM

- symmetry: 1s the AM supposed to be symmetric or not?

- nearly all AMs are: pee, LLR, X, MI, t, z, log odds ratio ..

- some are not: p(y|x), AP, ..

- metric type: +effect -freq. vs +effect +freq
- the former: log odds ratio, the asymmetric ones above,
: the -Iatter': pFYE, LLR, XZ’

- frequency information: token vs token+type frequency
- the former: all but one
- the latter: lexical gravity ¢

- probably best settings in an i1deal world:

- symmetry: no

- metric type: +effect
(frequency: token+type)

~1dea11y would be i1ncluded 1n some way

- let me suggest two measures for your consideration
- log odds ratio

i Z&F) Stefan Th. Gries
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why am I suggesting these two &
how 1s the log odds ratio computed?

- The log odds ratio
- symmetric, +effect -frequency
you compute
the odds of one outcome in one condition/context
the odds of the same outcome in the other condition/context
you divide them and log
maybe add 0.5 to all cells first to help w/ Os

’=762.2 as-predicat G’'=7622 as-predicative

yes yes no Totals

regard yes 80 1 ard 99 yes 800 190 990
no 607 13795¢ 13856510 6070 1379580 1385650
Totals 687 137977 1386G@xals 6870 1379770 1386640

odds of r when a 0.1318 odds of r when a 0.1318
odds of r when not a 0.000% of r when not a 0.0001

odds ratio odd 95191618 956.9618
Tog odds ratio Tog odds, &6B88io 6.8638
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Introduction What measures are typically used?
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why am I suggesting these two &
how 1s AP... computed?

. AP

- asymmetric, +effect - frequency
you compute
the % of the outcome of interest in one condition/context
the % of the outcome of interest in the other cond./context
you subtract the former from the Tatter
obviously, this can then be done i1n either direction

’=762.2 as-predicat G’'=7622 as-predicative

yes yes no Totals

regard yes 80 1 ard 99 yes 800 190 990
no 607 13795¢ 13856510 6070 1379580 1385650
Totals 687 137977 1386G@kals 6870 1379770 1386640

% of r when a 0.1164 % of r when a 0.1164
% of r when not a 0.0091of r when not a 0.0001

Delta P Del@alPo63 0.1163
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why am I suggesting these two &
how 1s AP... computed?

. AP

- asymmetric, +effect - frequency
you compute
the % of the outcome of interest in one condition/context
the % of the outcome of interest in the other cond./context
you subtract the former from the Tatter
obviously, this can then be done i1n either direction

’=762.2 as-predicat G’'=7622 as-predicative

yes yes no Totals

regard yes 80 19 ard 99 yes 800 190 990
no 607 13795¢ 13856%0 6070 1379580 1385650
Totals 687 137977 1386G@kals 6870 1379770 1386640

% of a when r 0.8081 % of a when r 0.8081
% of a when not r 0.00440f a when not r 0.0044

Delta P Del@a8@37 0.8037
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Note what they share

- The Tog odds ratio and AP are not affected if the
frequencies go up much (eg by an order of magnitude,
as exemplified above)

- to reiterate: many other AMs do not behave that way:

they react to effect size g | -
& frequency ® ‘
- here's the most i

widely-used one: G 2
- in ditransitives 5

- The cat g
- in imperatives 3 3 -

- K111 the mouse! S
- 1n verb-particle constructions 1

- He picked up the book VS 8 -

He picked the book up

0 100 200 300 400 200

Frequency
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Note what they don't share

- The log odds ratio 1s symmetric, AP 1S not, 1e
- the former cannot distinguish these collocations,
- the Tatter can
of«course, at<least, for<instance, in«<vitro, de<facto,

- according-to, upside-down, instead-of, ipso-facto,

- Sinn—Fein, bona—fide, ..
- 1n the spoken part of the BNC, all of these have
- G*>178

log odds ratio>5
- but why would such learned connections would be (as)
symmetr1c7 (Trautschold 1883, Cattell 1887)
- in fact, mismatches between corpus and psycho-
11ngu1st1c data might be 1n part due to overlooking
the directionality of collocations

Stefan Th. Gries
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But 1s AP really worth 1t?

- Glven how AP 1s computed, 1t 1s

- correlated much w/ transitional probability p(x|y)

- only natural to ask whether 1t's different enough
from p(x|y) to even make a difference

- Schneider (to appear): yes
- data: Switchboard NXT 2008 (642 phone conversations)

- dependent variable: hesitation placement 1n PPs

- predictors: a, AP», TP-, AP, TP, MI, lex. grav. G

- statistical analysis: party::cforest

- results: many different results for the three kinds

of PPs, but

"1t 1s mostly AP which outperforms transitional probability"
- this 1s true for both forward-directed measures and
backwards at phrase boundaries
- « measures are good predictors of collocation status when
wl = function word & w2 = content word
- other major finding: lexical gravity G does very well!

Dunn (2018): tuples of different APs are useful

Stefan Th. Gries
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Collostructional analysis

- Collostructional analysis (CA) 1s an method based on

the maybe most fundamental corpus linguistic

assumptions: the distributional hypothesis

- "[1]f we consider words or morphemes A and B to be more
different in meaning than A and C, then we will often
find that the distributions of A and B are more
different than the distributions of A and C. In other
words, difference of meaning correlates with difference
of distribution"” (Harris 1970:785f.)

- CA 1s a straightforward extension of ..

- of collocations: co-occurrence of words/lexical units

- to (one sense of) colligation: co-occurrence

- of words _
- and patterns/constructions

Stefan Th. Gries
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Collostructional
analysis

- CA 1s a 'family' of 3 methods
- collexeme analysis

co-occurrence of each of n words
in/with 1 construction

- distinctive collexeme analysis
co-occurrence of each of n words
in/with 2 (or more) constructions

- co-varying collexeme analysis
co-occurrence of words in 2 slots
of 1 construction

- for each 2x2 table, one com-

putes an assocCc. measure to see

- which words 1like cx 1

- which words prefer which cx

- which words go together 1n cx

- based on the (ranks of) sorted
association measures (AMS)

- AMs most widely used:
B pFisher—Yates exact & GZ/LLR

On association

cx 1: vy cx 1: n )3
word 1: vy 80 200 280
word 1: n 1000 .
> 1080 >
&
cx 1: vy cx 1: n >
word 2: vy 60 310 370
word 2: n 1020 .
> 1080 >
cx 1 CX 2 >
word 1: vy 150 80 230
word 1: n 930 720 1650
> 1080 800 1880
&
cx 1 cx 2 >
word 2: vy 60 310 370
word 2: n 1020 490 1510
> 1080 800 1880
word 2: y word2: n >
word 1: vy 40 240 280
word 1: n 330 470 800
> 370 710 1080
&
word 3: y word3: n >
word 1: vy 20 260 280
word 1: n 180 620 800
> 200 880 1080
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Addressing at least some of
the above-mentioned problems

- Let's lTook at a few examples of CA, where we
- keep frequency and contingency separate
- using (log2) of the observed co-occurrence frequency of

verbs & a construction _
- using an association measure that doesn't include the

observed co-occurrence frequency

- add dispersion to the mix _ _
- computing the dispersion of, say, verbs in the construction

against the distribution of verbs in general
- examples
- collexeme analysis: ditransitive
- collexeme analysis: 1mperative
distinctive collexeme anal.: verb-particle constructions
th1ngs not to be discussed (much) here:
keeping directions of association separate
- we could use APs as AMs (ApPvfromc & APcfromv)
- no entropy
- nho polysemy

I Stefan Th. Gries
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A collexeme analysis of
the ditransitive: steps 1-3

- Data: ICE-GB give LR
- 1820 ditransitives =, e
- 88 different verbs .

- with freqs between - .
1 and 566 feach .

- step 1: frequency o .

- surprisingly good: % .
give, tell, ask, Fﬁ .
show, send, offer, =«
but then get .. prorise .

- step 2: association o
w/ G/LLR, confla- &
ting freq & effect
- also good but not ave |-

that distinctive ; ; ; é ; ; ;
- step 3: keeping rocsoney longed o e bace 12
frequency & association separate: much more
informative (esp. 1f you want to be cogn. realistic)

Stefan Th. Gries _
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A collexeme analysis of
the ditransitive: steps 1-3

- Data: ICE-GB R

- 1820 ditransitives

- 88 different verbs et :

- with freqs between Zhow .
1 and 566 omres |

- step 1: frequency e

- surprisingly good: g

lend

give, tell, ask, oo
show, send, offer, i
but then get .. e

- step 2: association ™

deny

w/ G°/LLR, confla- -,

allocate

ting freq & effect =

- also good but not o |
t h at d -I S t -I n C -.t -I Ve (I) SKI)O 1OIOO 15IOO EOIOO 25|00 SOIOO 35I00
¢ Step 3 : keep-l ng G-squared /LLR

frequency & association separate: much more
informative (esp. 1f you want to be cogn. realistic)
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A collexeme analysis of
the ditransitive: steps 1-3

- 1820 ditransitives

- 88 different verbs
- with freqs between
1 and 566

- step 1: frequency
- surprisingly good:
give, tell, ask,
show, send, offer, ©
but then get .. . T A A
- step 2: association
w/ G°/LLR, confla-
ting freq & effect

- also good but not
that distinctive ' ' ' ' ' '

- step 3: keeping roqsoneylogged o e bace 12

frequency & association separate: much more

informative (esp. 1f you want to be cogn. realistic)
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A collexeme analysis of
the ditransitive: step 4

0 2 4 5] 8
I o 2 40
y give /
!
05 — tell Tl
tell
|| |
aup 0.5 ‘ !
0.3 o= 9_4" |
g Fe y |
0.3 '
ask ask _ _
0.1 D-__. . e show [ Dispersion
ispersion A
convince  Offepend 0.2 Srsend
assUIe. .o -
% PO :- o / w_‘_—_"_'"_"—'—-—-——._._____'_“_-_“___ Ll
) i convidte a2 allow get f
0.1 buyPaY "

3 wlfsﬁaﬂsie bﬂ o l.r:t“\e do /

2 '.;"_- n,%‘r'r'[e
i set e

Os Freguency (logged)

-1

Log odds ratio

Frequency (logged)
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A collexeme analysis of
the ditransitive: step 5

0.3
give
0.25 ] 0.3 tell
0z T 0.25
0.15 )
0.2
0.1 werg)
0.15
0.05 T DPcx >V DPcx >v
0.1 Sengssmow
offer
0 sen%3 i
1 offer — show . ;S%nu\.p t1:|<:e
0.8
0.6
0.4 0 .
1 Fre uency logged to the base of 2
DP v > cx o U 0
Q DP v -> cx
Frequency logged to the base of 2
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A collexeme analysis of
the 1mperative: steps 1-3

- Data: ICE-GB see . R
- 2083 1mperatives look :
- 314 different verbs ¥ .

- with freqs between . X
1 and 202 by N

- step 1: frequency .t

- surprisingly good: = N
see, let, Took, o :
take, .. have, .., be = :

- step 2: association:, .

w/ G?/LLR, confla- &= S

ting freq & effect -

- also good, but m .

- huge impact of freq .

on repelled verbs l . . l
fold & process? ) ° ° ’

- step 3: keeping =
frequency & association separate.: much more
1 nfO rmat-' ve Stefan Th. Gries
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A collexeme analysis of
the 1mperative: steps 1-3

- Data: ICE-GB o _ =
- 2083 imperatives o . :
- 314 different verbs = ¥

- with freqs between 2
1 and 202 o e

- step 1: frequency :

- surprisingly good: & .
see, let, look, rocos .
take, .. have, .., be =

- step 2: associationg :

w/ G*/LLR, confla- i :
ting freq & effect =i :
- also good, but o |
- huge impact of freq - | :
on repelled verbs l . . l

5 6 7 8 9

- fold & process?
- step 3: keeping
frequency & association separate: much more
informative Stefan Th. Gries
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A collexeme analysis of
the 1mperative: steps 1-3

- Data: ICE-GB © 1 g
- 2083 1mperatives
- 314 different verbs .| &
- with freqs between & . ¥
1 and 202 ¢ 3 e
step 1: frequency "] NP7 S
- surprisingly good: ¢ AR A S . #
see, let, look, i ¢ o & S ¢ G
take, .. have, .., be~ R g{(@f T o
- step 2: association -/ A AN L A S —
B g »
w/ G°/LLR, confla- ) SR B R BN
ting freq & effect .]¢ < &
- also good, but '
- huge impact of freq .
on repelled verbs T é ; ; ;

- fold & process?
step 3: keeping
frequency & association separate: much more
informative

Frequency logged to the base of 2
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A collexeme analysis of
the 1mperative: step 4

0 2 4 6

| | | |

015 ___\ e l/l/\), see /
0.1
let
look
01 —_-l !::‘1{; et Uw;l}aa.lﬂze
- 2o
tell 0.1 tell v.;ulllgel
come2et have
be
0.05 ol remembﬁL hage reme mbgy e
; didy
Dispersian Wy make  [be worry keep Plive Dispersion
) i day is
E. lis EFFU-VE e I"‘le“wailhul i o
e hang {arzet :
izt 0.05 h—ﬂ—m_iif_ Bet e |
Y shut chee k*i ”'i“‘f’ér" e Tl
8 fhditate  contaiilk, & s alla
o L1 §EPToce Sy o '%w"ﬂnd /
4 S8, o TEVEERS 4 CH Tkt o
. g |/
2 3
0
2 (8 2 Frequency (logged)
Log odds ratio 0 2
Log odds ratio
Frequency (logged)
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A collexeme analysis of
the imperative: step 5
| | | o 0.2

0.2
0 o 0050 015
0.05
0.05 '—4
see
0 let
fold -
: ; ; . R let be
ik {epsineaivEesitate WO, — laakg
-0.05 ; ShoRgENEhte evmgd“ﬂesshMi$ > & Temempig| of 8 % have
remembrr'l Frequgncy logged to the base of 2
0.1 think worryisten | aski@
-~ fold > wai l?'!irlk
4 “gﬁ‘gclfg i
AIG
-0.15 hesilalergrm:less Nl
forgive reverddEil
0.2 “I SXCUSighten gpapg
0. 2 striplen blegsck; iy Wig
DP cx -3 v sscrubr | Wawpuak Ll
balefaﬁF&hiihnfmcEPv—> 8 i /
redbrarie rUBAeigeg L
ceblickiig: OALgk i e
0 toalidigl g
0 y
&k 0.4 DPcx = v
0.2
0
DP v > cx be
Frequency logged to the base of 2
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A distinctive collexeme analysis of
verb-particle constructions: steps 1-3

- Data: ICE-GB put out R
- 1164 VPCs P, :
- 835 different verbs s
- with freqs between &f,
1 and 31 have out .
- step 1: frequency == . : _
- hard to evaluate, 2 |5 g
seems reasonable(?) wor |& g
- step 2: associationm, § 2
w/ G*/LLR, confla- ‘i
ting freq & effect ‘
- seems very similar @=b
w/ ranking changes ur
. step 3: keeping b |
frequency & M 2 ; 20
association separat Frsquency derence
much more informative
Oon association 3Eeggﬂtzhéaﬁglﬁ§ & JLU Giessen 25




A distinctive collexeme analysis of
constructions: steps 1-3

verb-particle

- Data: ICE-GB

- 1164 VPCs

- 835 different verbs
- with freqs between
1 and 31

- step 1: frequency

- hard to evaluate,
seems reasonable(?)

- step 2: association

w/ G*°/LLR, confla-

ting freq & effect

- seems very similar
w/ ranking changes

- step 3: keeping

frequency &

association separat

Introduction Introduction
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get_up
put_out
turn_out
put_up
get_out
play_out
get_off
bring_up
sort_up
put_NA
have out
cut_up
wipe_out
give_away
cut_down
bring_forward
work_out
switch_on
put_forward
open_up
bring_in
cut_off
bring_about
give_up
fill_in
build_up
rule_out
pick_up
take on
set_up
carry_out

much more informative

On association

R
: J
L ]
L |
[ ]
L |
»
i L |
g : 3
A »
3 : o
g . £
& &
2 =
@ o
= 7]
| ] | ; | |
-60 -40 -20 0 20 40
Signed G-squared / LLR
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- Data:
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A distinctive collexeme analysis of

verb-particle constructions:

steps 1-3

ICE-GB
- 1164 VPCs L
- 835 different verbs

- with freqs between
1 and 31 ]

- step 1: frequency
- hard to evaluate,
seems reasonable(?)
- step 2: association
w/ G*°/LLR, confla-
ting freq & effect
- seems very similar s 4
w/ ranking changes
- step 3: keeping N

Log odds ratio

frequency & ;
association separat
much more informative

On association

put_out R
get_out
pull_down put_up
keep_out )
iy ondf bring_up
Tt
T turrpé?kﬁ"o pick_out
ottt v et
kepplllciamn follow_up
~ ' wlbeback . take_out
SRR ey autt  bifmgh ot bring_down take_in bring_out take_up
m send out
i put.on
|efar .
cbendl_out pﬂ —= W—B put_in
write_off B%Tld daCK ¥ e _up .
leave rg;{ft take over Prlng in pick_up
ol _up work_ set_up
take on
gweuh:g _up
carry_out
| | | I | T
1 2 3 4 5 6
Frequency logged to the base of 2
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A distinctive collexeme analysis of
verb-particle constructions: step 4
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concluding remarks re collostructions
(from Gries 2012, 2015)

- Collostructional analysis has been widely applied

- diachronic & synchronic construction studies

- first & second/foreign language acquisition
psycholinguistic studies of priming, ..

-wh11e 1ts implementation may need to vary between
applications, the association logic per se 1s sound
. s0 don't believe all sorts of nonsense about it

- no, the use of AMs - p-based or otherwise - is not a big

significance testing problem but maybe a conflation one
- conflation of effect & frequency
- conflation of direction of association

- no, the other-other cell (d) 1s not a huge problem -

you estimate 1t reasonably as-predicative
- no, semantics doesn't go 7nto yes L

. . : . 80 ) 19 (b)
it, but it might emerge from it resard > 6mfi) :Bﬂﬁécw

- so, if you criticize 1t for something
- you better understand it first

- provide alternative measures that are as good or better
then we can talk ..
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Cconcluding remarks re association

- In terms of learning, acquisition, & processing,
there's 1ittle that's more important than
association
- association measures quantify
- what-1f?
-1f .., then ..
. different measures are available,
- all based on frequency of occurrence and co-occurrence
- but differing in terms of 1mp1ementation & implications
- which shows that 'frequency' per se 1is versatile,
1f used properly and non-anxiously
- thus and not forgetting all prev1ous 'lTessons’
- 1include frequencies of occurrence & co-occurrence
- be aware of direction of association
- be aware of dispersion
- be aware of whether you can or cannot tolerate the
information loss resulting from conflation -
1f yes, conflate properly
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Thank you!

http://tinyurl.com/stgries
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