Animal Biology

Geographic variation in skin structure in male Andrew's toad (*Bufo andrewsi*)

Can Wang^{1,2,3}, Long Jin^{1,2,3}, Zhi Ping Mi^{1,2,3} and Wen Bo Liao^{1,2,3,*}

¹ Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China

West Normal University, Nanchong, 637009, Sichuan, China

² Key Laboratory of Artificial Propagation and Utilization in Anurans of Nanchong City, China West

Normal University, Nanchong, 637009, Sichuan, China

³ Institute of Eco-Adaptation in Amphibians and Reptiles, China West Normal University, Nanchong,

637009, Sichuan, China

Submitted: September 26, 2018. Final revision received: August 5, 2019. Accpeted: September 23,

2019

Abstract

Variation in organ structure likely provides important clues on local adaptation and reflects the pressure target of natural selection. As one of the important organs, the skin plays a key role in adapting to complex environments by reducing water loss or increasing water absorption. Nevertheless, variation in the skin structure across different populations in a single species of anurans remains enigmatic. Here, we studied geographical variation in the skin structure of male Andrew's toads (*Bufo andrewsi*) across ten populations using histological methods. We quantified thickness of the skin, the epidermis, the loose layer, the compact layer, and of the epidermis, area of granular glands (GGs) and of ordinary mucous glands (OMGs), width of the calcified layer, and number of capillary vessels. We found that

the thickness of the skin, dermis and loose layer in dorsal skin increased with latitude whereas the area of granular glands decreased with altitude. Moreover, the width of the calcified layer in ventral skin decreased with latitude among populations. Our findings suggest that geographical variation in skin structure in male *B. andrewsi* is likely to reduce water loss or make water absorption occur faster in complex high-latitude environments, improving local adaptation.

Keywords

Anurans, Bufo and rewsi, geographical variation, local adaptation, skin structure

*) Corresponding author; e-mail: liaobo_0_0@126.com

Supplementary material

Table S1.

Study sites	Latitude (° N)	Altitude (m)	Mean water vapor pressure	Mean rain fall (mm)	Annual mean temperature	SVL (mm)	Body mass (g)
			(kPa)		(°C)		
Yingxiu (YX)	31.03	888	1.48	67.67	16.04	78.83 ± 7.40	34.97 ± 4.28
Qilixia (QLX)	32.62	1351	1.16	70.25	9.89	82.73 ± 4.25	55.30 ± 10.71
Gengda (GD)	31.08	1524	1.18	63.67	10.88	65.21 ± 2.00	25.58 ± 3.12
Shiziba (SZB)	32.66	1651	1.11	70.83	9.20	80.27 ± 5.29	51.35 ± 4.29
Lamasi (LMS)	31.03	1961	1.03	62.00	8.62	68.06 ± 5.79	21.20 ± 4.58
Jiamuke (JMK)	27.58	2013	0.94	68.33	11.93	77.47 ± 6.38	50.24 ± 12.89
Qibie (QB)	27.57	2123	0.95	69.67	11.82	68.06 ± 2.20	33.95 ± 11.03
Yinchanggou(YCG)	30.97	2153	0.96	60.83	7.81	77.70 ± 5.18	26.24 ± 1.59
Pantiange (PTG)	27.33	2520	0.96	72.58	11.98	73.85 ± 5.11	39.00 ± 4.69
Sanchahe (SCH)	28.92	2554	0.81	69.08	8.80	60.99 ± 5.36	19.97 ± 0.72

Descriptive information of the study sites and measures of mean (\pm SD) body size of male *Bufo andrewsi*.

Abbreviation: SVL = snout–vent length.

Table S2.

Description of the structure of dorsal skin of male Bufo and rewsi at the study sites.

Study sites	tes Thickness (µm)					Area (µ	Calcified layer	Capillary	
	Total skin	Epidermis	Loose layer	Campact	Dermis	GGs	OMGs	- length (μm)	vessel number
				layer					
Yingxiu (YX)	373.4 ± 24.7	24.4 ± 5.3	201.9 ± 38.2	147.1 ± 28.6	349.0 ± 22.6	179580.7 ± 79896.1	6564.6 ± 2778.3	355.8 ± 104.8	12.0 ± 0.9
Qilixia (QLX)	263.5 ± 72.2	18.2 ± 2.1	153.1 ± 55.6	92.1 ± 20.8	245.3 ± 71.2	130734.5 ± 47353.3	2931.5 ± 1069.9	204.4 ± 52.0	12.0 ± 4.6
Gengda (GD)	287.7 ± 99.1	23.3 ± 3.7	146.2 ± 55.4	118.1 ± 53.1	264.3 ± 95.6	153185.7 ± 151970.9	4489.2 ± 1164.7	229.8 ± 114.0	16.5 ± 5.4
Shiziba (SZB)	330.1 ± 54.2	27.3 ± 7.9	178.8 ± 32.7	124.1 ± 30.5	302.8 ± 57.7	92386.8 ± 33774.9	3735.1 ± 1252.0	185.8 ± 74.0	18.4 ± 7.2
Lamasi (LMS)	227.3 ± 50.5	27.5 ± 9.6	119.6 ± 37.2	80.1 ± 15.4	199.8 ± 50.9	64143.4 ± 54790.2	3862.6 ± 852.4	201.5 ± 48.0	19.2 ± 7.7
Jiamuke (JMK)	214.0 ± 46.1	31.3 ± 5.0	87.6 ± 28.5	95.2 ± 20.8	182.8 ± 43.8	138420.8 ± 68813.1	6095.8 ± 1699.9	334.4 ± 132.4	16.5 ± 6.9
Qibie (QB)	189.3 ± 73.0	30.7 ± 7.6	74.9 ± 50.4	83.7 ± 21.8	158.5 ± 68.8	51905.9 ± 29476.9	5194.3 ± 2266.3	214.4 ± 39.5	21.5 ± 13.1
Yinchanggou (YCG)	300.3 ± 67.7	25.5 ± 6.5	174.7 ± 60.2	100.2 ± 20.9	274.8 ± 71.8	97345.4 ± 38126.9	4487.9 ± 1225.7	239.9 ± 95.5	15.5 ± 2.4
Pantiange (PTG)	227.0 ± 54.4	31.8 ± 6.5	90.4 ± 24.2	104.9 ± 48.3	195.2 ± 49.5	122840.2 ± 102022.5	3722.0 ± 1419.8	202.8 ± 46.1	19.5 ± 15.6
Sanchahe (SCH)	255.4 ± 72.4	22.4 ± 5.1	135.5 ± 53.2	97.6 ± 33.8	233.1 ± 68.7	94589.9 ± 64140.6	3728.7 ± 1132.2	135.2 ± 27.5	25.9 ± 1.5

Abbreviations: GG = granular gland; OMG = ordinary mucous gland.

Table S3.

Description of the structure of ventral skin of male Bufo and rewsi at the study sites

Study site	Thickness (µm)					Area (μm ²)	Calcified layer	Capillary
	Total skin	Total skin Epidermis		Compact	Dermis GGs		OMGs	length (µm)	vessel number
				layer					
Yingxiu (YX)	240.1 ± 55.3	35.3 ± 9.8	116.5 ± 44.1	88.3 ± 16.8	204.7 ± 51.4	38750.3 ± 18316.8	5691.7 ± 804.2	169.0 ± 74.9	16.6 ± 8.7
Qilixia (QLX)	189.0 ± 43.5	32.7 ± 9.5	90.3 ± 30.2	67.0 ± 16.7	157.3 ± 44.0	42784.7 ± 10713.5	5148.6 ± 2399.1	99.3 ± 34.7	15.6 ± 3.3
Gengda (GD)	200.2 ± 48.2	26.3 ± 6.5	106.7 ± 23.6	67.2 ± 35.8	173.9 ± 45.7	38317.4 ± 25600.7	4789.4 ± 2088.3	82.7 ± 25.6	15.4 ± 9.9
Shiziba (SZB)	204.7 ± 54.3	38.5 ± 8.2	95.0 ± 20.0	71.2 ± 41.3	166.2 ± 57.4	37188.4 ± 8812.6	4553.7 ± 770.7	152.8 ± 24.9	16.1 ± 5.1
Lamasi (LMS)	225.4 ± 93.8	29.8 ± 10.0	114.1 ± 67.0	81.4 ± 20.8	195.6 ± 87.3	41496.4 ± 25561.9	4476.9 ± 696.4	101.4 ± 27.8	18.6 ± 6.9
Jiamuke (JMK)	171.7 ± 16.8	42.1 ± 15.1	57.7 ± 4.6	72.0 ± 11.5	129.7 ± 10.7	25348.0 ± 10007.0	5950.8 ± 2193.9	126.8 ± 56.2	23.7 ± 6.3
Qibie (QB)	202.0 ± 41.3	34.3 ± 5.2	81.2 ± 35.7	86.5 ± 13.4	167.6 ± 44.5	37048.6 ± 9394.9	5428.8 ± 798.5	233.7 ± 104.4	24.9 ± 6.0
Yinchanggou (YCG)	177.6 ± 27.4	30.7 ± 6.9	81.5 ± 23.1	65.4 ± 14.1	146.9 ± 32.1	40612.1 ± 14950.7	5341.6 ± 447.9	129.8 ± 36.9	16.3 ± 4.4
Pantiange (PTG)	180.9 ± 21.0	37.6 ± 8.2	66.2 ± 20.2	77.0 ± 16.9	143.2 ± 17.1	18913.5 ± 7426.3	3740.0 ± 282.8	148.8 ± 89.1	18.2 ± 7.6
Sanchahe (SCH)	212.1 ± 14.5	25.2 ± 7.1	108.1 ± 16.9	78.7 ± 5.0	186.8 ± 17.5	37990.4 ± 14616.2	4494.6 ± 512.4	101.5 ± 36.9	31.0 ± 8.1

Table S4.

Variables	Mean water vapor pressure (kPa)		Mean rain	ıfall (mm)	Annual mean temperature (°C)		
	r^2	р	r^2	р	r^2	р	
Skin thickness	0.228	<0.01	0.015	0.397	< 0.01	0.959	
Epidermis thickness	0.086	0.039	0.071	0.623	0.048	0.126	
Dermis thickness	0.250	<0.01	0.019	0.342	0.0016	0.781	
Loose layer thickness	0.246	<0.01	0.034	0.202	0.032	0.210	
Compact layer thickness	0.130	0.010	< 0.01	0.996	0.053	0.108	
GG area	0.058	0.094	< 0.01	0.977	0.065	0.075	
OMG area	< 0.01	0.856	0.066	0.072	0.063	0.079	
Calcified layer width	0.055	0.106	0.030	0.232	0.145	< 0.01	
Capillary vessel number	0.166	< 0.01	0.045	0.756	0.058	0.097	

Relationships between skin structure in dorsal skin and water vapor pressure, rainfall and annual temperature among populations.

Table S5.

Variables	Mean water vapor pressure (kPa)		Mean rair	nfall (mm)	Annual mean temperature (° C)		
			r^2	р	r^2	р	
Skin thickness	0.027	0.264	0.008	0.548	< 0.01	0.929	
Epidermis thickness	0.001	0.820	0.076	0.055	0.078	0.051	
Dermis thickness	0.040	0.169	0.014	0.413	< 0.01	0.761	
Loose layer thickness	0.112	0.019	0.019	0.344	0.030	0.236	
Compact layer thickness	0.017	0.371	< 0.01	0.916	0.032	0.220	
GG area	0.039	0.177	0.039	0.211	0.079	0.053	
OMG area	< 0.01	0.846	0.070	0.063	< 0.01	0.938	
Calcified layer width	0.002	0.784	0.023	0.330	0.032	0.247	
Capillary vessel number	0.251	< 0.01	< 0.01	0.594	< 0.01	0.943	

Relationships between skin structure in ventral skin and water vapor pressure, rainfall and annual temperature among populations.

Figure S1. The exact regions of the dorsal and ventral skin that were extracted from the specimens.