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Supplementary Information 2: Details on analyses

1 Introduction

�is appendix contains the results of additional GLMM results and other regression models that
factor in phylogenetic trees. We structure this supplementary information by topic:

• Further details on GLMMs (Section 2)

• Control for genealogical relationships (Section 3)

• Testing the in�uence of languages with a large number of L1 speakers (Section 4)

• Testing the in�uence of languages with only animacy-based gender or no gender (Section 5)

• Testing the in�uence of the ‘sharing a border with Ubangi/Central Sudanic’ predictor (Sec-
tion 6)

• Including random slopes for relevant predictors (Section 7)

• Typologies of gender systems (dependent measures) (Section 8)

We include analyses on three types of measures: the binary typology (described in the main
text, Section 3.1), the number of targets that agree syntactically/semantically (described in the
main text, Section 3.1), and the two �rst and most important dimensions of a Multiple Correspon-
dence Analysis (MCA) conducted on the full data set (described in Section 8). We also use various
di�erent ways to account for the genealogical relationships between the languages of the sample.
�ese are listed in Table 1 and elaborated upon below in section 3, short-hands for the di�erent
models are introduced in Table 1.

2 Details on GLMMs

In this section we describe our generalized linear mixed e�ects models (GLMMs), focusing on as-
pects that were done in the same way for each dependent measure. We conducted GLMM anal-
yses using the package brms (Bürkner 2017), available in R (R Core Team 2017). brms allows
the user to �t Bayesian multilevel models in R using the probabilistic programming language
Stan (Carpenter et al. 2017). In order to avoid problems with quasi-separation in the data, all
independent measures (including the binary predictors, ancestor in rainforest and border with
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Ubangi/Central Sudanic) were scaled using the methodology described by Gelman & Hill (2007: 56-
57) and Gelman et al. (2008: 1380) such that the transformed measures have mean 0 and stan-
dard deviation 0.5. See section 4 on dealing with outliers in the number of L1 speakers. We used
the recommended weakly informative prior described by Gelman et al. (2008: 1380) and Gelman
(2019), a Cauchy distribution with 3 degrees of freedom, mu = 0, and scale = 2.5 (brms/R: (stu-
dent t(3, 0, 2.5)) for the main intercept and predictors. Other priors were not speci�ed and thus
received the default brms prior, which is a �at prior (see documentation on brms’s set prior()
function). Chain convergence for all parts of the model (coe�cients, random e�ects) was assessed
with the help of brms report values (Rhat, Bulk ESS, Tail ESS) and was also visually assessed. Var-
ious parameters were tweaked in order to have chain convergence for all models, following warn-
ing messages from brms. �e families and links used are:

• Binary typology: logistic regression, Bernoulli family, logit link

• Target counts: binomial family, logit link (15 trials)

• MCA dimensions: continuous measure, Gaussian family, identity link

As random intercepts for genealogical control, we used 1) the ‘Glo�olog’ grouping variable
based on the classi�cations of the Bantu language family by Glo�olog (Hammarström et al. 2018)
and 2) the MCC tree and full tree sets by Koile et al. (submi�ed) (see below). We also constructed
models with random slopes from the ‘Glo�olog’ grouping variable on those predictors that we
found to be relevant in the models with only a random intercept; these are compared in section
7 of this Appendix. Since we are primarily interested in identifying the factors that impact NWB
gender systems, we do not report the estimates for random e�ects (intercepts and slopes, when
included) below.

We found that both random intercepts and random slopes were signi�cant contributors in all
GLMMs in which they were included, suggesting that these are needed to obtain the best model
�ts for all types of dependent measures. �is was true both for analyses using the ‘Glo�olog’
grouping variable as well as for those using Koile et al. (submi�ed)’s MCC tree and full tree set.

For analyses conducted using brms, we construct �gures displaying the mean of the posterior
distribution of each coe�cient, and its two-sided 95% Credible Intervals. We use the 95% Credible
Interval (95%CI) in order to interpret the relevance of each independent variable. When the 95%
CI excludes zero this suggests that the evidence for contribution of the independent variable is
strong enough and su�cient by standard decision rules (based on the data and applied model). In
the Figures below (and in the main text), we highlight the independent variables whose 95% CI
excludes zero by a preceding asterisk (*). �e data and code to run the various models is added to
the paper as Supplementary Information 3.
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3 Control for genealogical relationships

We include in the analyses di�erent ways to account for the genealogical relationships between
the languages of the sample. �ese are:

• Grouping factor: main subgroups of Bantu distinguished by Glo�olog (Hammarström et al.
2018);

• Tree set from Koile et al. (submi�ed);

• Maximum Clade Credibility (MCC) tree of tree set from Koile et al. (submi�ed).

In the main text, we report on analyses using the Glo�olog grouping factor. It consists of the
seven groups of Narrow Bantu as listed on Glo�olog: Ababuan (22 languages in our sample),
Bantu A-B10-B20-B30 (70), Bube (1), Central-Western Bantu (130), East Bantu (12), Lebonya (6),
and Mbam (14). Bube is a genealogical grouping containing a single language. As this is not a
workable grouping in a GLMM, we add Bube to Mbam as Mbam has been proposed as its closest
a�liation. Our sample does not include all Central-Western and all East Bantu languages, as many
of these are spoken in di�erent Guthrie zones. We included only those from Guthrie zones A, B,
C, D, and H. �e Glo�olog Bantu family tree is based on Bostoen & Gregoire (2007) which in turn
is based on Bastin et al. (1999).

�e phylogenetic trees we used are taken from Koile et al. (submi�ed). �is is follow-up work
on the route of the Bantu expansion and uses data from Grollemund et al. (2015), the latest phylo-
genetic analysis of the Bantu languages. �e advantage of using the phylogenetic trees generated
by Koile et al. (submi�ed) rather than those generated by Grollemund et al. (2015) is that the for-
mer includes more languages than the la�er, with added languages being assigned to genealogical
groupings on the basis of Glo�olog (Hammarström et al. 2018, i.e. no new lexical data is used for
phylogenetic estimation). Using these more recent analyses enables us to include almost all of the
languages in our sample in the GLMMs, thus increasing their statistical power. �e tree set in-
cludes 400 trees, the Maximum Clade Credibility (MCC) tree is a summary of the full sample of
400 trees.

In previous versions of this work, we considered a second grouping factor, the main subgroups
of (NW) Bantu distinguished by Grollemund et al. (2015): North-Western Cameroon (48 languages
in our sample), North-Western Gabon (38), Central-Western (89), and West-Western (55). �ere
are also some H languages that belong to their South-Western clade (8), and some D languages
that belong to their Eastern clade (17), so in total there are 6 groups. Bostoen (2019: end of sect.
4) suggests that these groups have gained wider acceptance, and names them as follows: “Mbam-
Bubi (A40-A60) straddling Narrow and Wide Bantu; North-West (rest of zone A + B10-30); Congo-
Basin (mainly zone C); West-Coastal (mainly B40-80, zone H); South-West (zones K and R + parts
of zone L); East (remainder apart from some hard-to-classify zone D languages in North-East-
Congo).” We did not use this grouping factor as we compared model �t of the models reported
on in text (bin Glot int, syn counts Glot int, and ani counts Glot int) with parallel models using
the Grollemund et al. (2015) groupings using the R package ‘loo’ (Vehtari et al. 2017), and found
that the Glo�olog grouping factor outperformed the Grollemund et al. (2015) grouping factor in
all three models.

�e GLMMs using the MCC tree by Koile et al. (submi�ed) are compared to the models re-
ported on in text in Figure 1. �e �rst thing that can be observed is the �t of the binary typology
model (bin Koile et al MCC) vs. the two models using target counts; the posterior distributions of
the binary typology model are very wide, resulting in no signi�cant e�ects at all. For the model
with the number of targets agreeing syntactically as the dependent variable, number of L1 speak-
ers is a signi�cant negative predictor. For the model with the number of targets taking animacy-
based gender marking as the dependent variable, sharing a border with Ubangi/Central Sudanic is
a signi�cant positive predictor.
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(f) Model: ani_counts_Koile_et_al_MCC

Figure 1: Comparison of posterior distribution of �xed e�ects of models reported on in the main text, using
a random intercept using Glo�olog groupings (le�), and correlate models with a random intercept
using the co-variance matrix from the MCC tree by Koile et al. (submi�ed) (right)
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In addition to GLMMs in brms, we used phylogenetic comparative methods specialized in con-
trolling for genealogy while running regression analyses. For the dependent measures where the
number of targets with a particular type of gender marking is modelled, we used phylogenetic
generalized least squares (PGLS); for the binary typology, we used a phylogenetic linear regres-
sion model.

We conducted phylogenetic generalized linear models to model the binary typology using phy-
lolm (Ho & Ane 2014) in R (R Core Team 2017), reported on in Tables 2 and 3. �e �rst of these
analyses uses the MCC tree, the second the full treeset of 400 phylogenetic trees. phylolm uses
not a Bayesian but rather a maximum likelihood algorithm. For those models, statistical relevance
(or signi�cance) of the independent measures is assessed using the reported p-value. We �nd four
relevant predictors in these models, and both models give more or less the same results: current
rainforest overlap is a signi�cant negative predictor; longitude, ancestor in rainforest and sharing
a border with Ubangi/Central Sudanic are signi�cant predictors.

Table 2: Relevance of coe�cients for bin phylolm Koile et al MCC
Estimate Std. Error z value p value

Intercept -3.58 1.03 -3.49 0.0005
No. of L1 speakers -0.03 0.35 -0.08 0.94
*Current rainforest overlap -1.12 0.44 -2.53 0.02
*Longitude 1.13 0.56 2.03 0.042
Latitude -1.05 0.56 -1.88 0.06
*Ancestor in rainforest 2.61 0.98 2.66 0.008
*Border with Ubangi / Sudanic 1.73 0.14 3.06 0.003

Table 3: Relevance of coe�cients for bin phylolm Koile et al treeset
mean Estimate sd Estimate mean z value mean p value

Intercept -3.63 0.31 -3.95 0.0007
No. of L1 speakers 0.03 0.05 0.08 0.89
*Current rainforest overlap -1.04 0.09 -2.38 0.02
*Longitude 1.35 0.33 2.66 0.048
Latitude -0.85 0.19 -1.66 0.11
*Ancestor in rainforest 2.58 0.29 2.78 0.008
*Border with Ubangi / Sudanic 1.65 0.57 2.88 0.004

�e number of targets with a particular type of gender marking was modelled using phyloge-
netic generalized least squares (PGLS) implemented in the caper (Orme 2011) R package (R Core
Team 2017), reported on in Tables 4 and 5 (syntactic agreement) through 6 and 7 (animacy-based
agreement). PGLS is used to model continuous dependent measures, and using it for count data is
thus technically not appropriate. However, we use it here in order to contrast the results with
those using brms and to assess the relevance of the phylogenetic component (see below). We
scaled the count data using the methodology described by Gelman & Hill (2007: 56-57) and Gel-
man et al. (2008: 1380) such that the transformed measures have mean 0 and standard deviation
0.5. PGLS as implemented in caper does not use a Bayesian but rather a maximum likelihood al-
gorithm. For those models, statistical relevance (or signi�cance) of the independent measures is
assessed using the reported p-value.

�e �rst of these analyses uses the MCC tree, the second the full tree set of 400 phylogenetic
trees. �ese analyses are similar to the analyses reported on in the main text (syn counts Glot int
and ani counts Glot int, see Figs. 7 and 8 in the main texts). �e models using the number of tar-
gets that agree syntactically (syn counts pgls Koile et al MCC and syn counts pgls Koile et al treeset)
have two relevant predictors, number of L1 speakers and sharing a border with Ubangi/Sudanic
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(the former e�ect is not signi�cant for the analyses using the full tree sample, p = 0.09). �e di-
rection of the e�ects is identical too. �e models using the number of targets that display animacy-
based agreement (ani counts pgls Koile et al MCC and ani counts pgls Koile et al treeset) have a
single relevant predictor, sharing a border with Ubangi/Sudanic. In the corresponding brms model
(model ani counts Glot int, see Figure 8 in the main text) longitude and latitude are also relevant
predictors, especially in Table 7 we do see longitude approaching signi�cance.

Table 4: Relevance of coe�cients for syn counts pgls Koile et al MCC
Estimate Std. Error t value p value

Intercept 0.02 0.19 0.08 0.93
*No. of L1 speakers -0.15 0.07 -2.02 0.045
Current rainforest overlap 0.08 0.09 0.93 0.35
Longitude -0.12 0.14 -0.84 0.40
Latitude -0.23 0.13 -1.73 0.09
Ancestor in rainforest 0.08 0.16 0.47 0.64
*Border with Ubangi / Sudanic -0.25 0.12 -2.06 0.04

Table 5: Relevance of coe�cients for syn counts pgls Koile et al treeset
mean Estimate sd Estimate mean t value mean p value

Intercept 0.08 0.016 0.65 0.52
No. of L1 speakers -0.13 0.005 -1.69 0.09
Current rainforest overlap 0.09 0.006 1.09 0.28
Longitude -0.03 0.016 -0.33 0.74
Latitude -0.13 0.031 -1.39 0.17
Ancestor in rainforest -0.03 0.03 -0.20 0.80
*Border with Ubangi / Sudanic -0.30 0.02 -2.59 0.01

7



Table 6: Relevance of coe�cients for ani counts pgls Koile et al MCC
Estimate Std. Error t value p value

Intercept -0.19 0.21 -0.94 0.34
No. of L1 speakers -0.02 0.07 -0.37 0.71
Current rainforest overlap -0.13 0.08 -1.57 0.12
Longitude 0.17 0.14 1.16 0.25
Latitude -0.11 0.13 -0.88 0.38
Ancestor in rainforest 0.12 0.16 0.75 0.45
*Border with Ubangi / Sudanic 0.34 0.12 2.92 0.004

Table 7: Relevance of coe�cients for ani counts pgls Koile et al treeset
mean Estimate sd Estimate mean t value mean p value

Intercept -0.30 0.032 -2.30 0.05
No. of L1 speakers -0.005 0.010 -0.07 0.95
Current rainforest overlap -0.09 0.009 -1.19 0.24
Longitude 0.18 0.030 1.91 0.09
Latitude -0.10 0.016 -1.05 0.30
Ancestor in rainforest 0.23 0.046 1.74 0.11
*Border with Ubangi / Sudanic 0.42 0.031 3.81 0.0007

PGLS implemented in caper (Orme 2011) includes a test of phylogenetic signal called lambda
(λ) Pagel (1999). λ is a branch length scaling parameter and can be used to measure the extent of
the dependency of the data on the model of Brownian evolution given the structure of the phy-
logenetic tree. �e optimized λ value indicates to what extent the data under consideration have
been in�uenced by genealogy: scores that are zero or close to zero indicate that data does not
pa�ern according to genealogy; scores of one or close to one (> 0.8) imply an a�ect of shared
history on the data. High λ scores imply that closely related languages behave similarly. �e dis-
tributions of λ scores (n = 400 phylogenetic trees) of the PGLS analyses for
syn counts pgls Koile et al treeset and ani counts pgls Koile et al treeset are included in Fig-
ure 2. �is Figure shows that neither analysis displays high λ scores, implying that there is no
strong relationship between the data on the number of targets that agree syntactically or those
that agree semantically, and the genealogical relationships between the NWB languages.

4 Models testing the influence of languages with a large number of
L1 speakers

In the models reported so far we have not dealt with outlier languages in terms of number of L1
speakers (see Figure 10 in the main text). We have chosen not to log population �gures prior to
scaling, as we felt that 1) the variable would then become too far removed from the facts and 2)
logging produced outliers on the other end of the scale, that is, for very small languages. In Fig-
ure 3, we compare the three main models reported on in the main text (le�) with models that ex-
clude the 15 languages with 400.000 speakers or more (right). �is cut-o� point was chosen a�er
assessing a QQ-plot of the scaled number of L1 speakers.

�e Figure shows that overall, the exclusion of these ��een languages impacts the results
quite minimally, only the model of the binary typology is a�ected such that the e�ect for cur-
rent rainforest disappears, and an e�ect for ancestor in rainforest becomes relevant. However,
the e�ect of number of L1 speakers turns around. While we �nd that a smaller number of targets
agreeing syntactically is associated with a higher number of speakers in model syn counts Glot int,
a bigger number of targets agreeing syntactically is associated with a higher number of speakers
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Figure 2: Distribution of λ scores for PGLS model syn counts pgls Koile et al treeset, for analyses modelling
the number of targets that agree syntactically (le�), and model ani counts pgls Koile et al treeset,
for the number of targets that agree semantically (right)

in model syn counts Glot int no L1 outl. Figure 10 in the main text shows these two opposite
interactions. On the le�, we can only see some data points (around 15) clearly; these all have a
number of L1 speakers > 400.000.1 On the le� side of Figure 10 in the main text, we can see a
negative e�ect, with a smaller number of targets agreeing syntactically being associated with a
higher number of speakers. On the right, we are looking only at data points from languages with
400.000 speakers and lower, and there we can observe a positive e�ect, i.e., a bigger number of
targets taking syntactic agreement is associated with a higher number of speakers.

How to explain this seemingly discrepant result? We believe that, at least in this NWB data
set, the e�ect of the number of speakers is only meaningful above a certain cuto� point, that is,
for the bigger languages, and not for smaller languages (the cuto� point need not necessarily lay
at exactly 400.000 speakers). In our data set, the distribution of the number of L1 speakers vari-
able is skewed in both directions. We have 68 languages with 10.000 speakers or less, and 139
(including these 68) with 100.000 speakers or less. In contrast, we have 15 languages with 400.000
speakers or more.

�e number of L1 speakers has been used as a proxy for language contact and within-group
communication with adult learners. A large proportion of L1 speakers may lead to ‘simpli�cation’
of language structures (e.g., reduction of in�ectional morphology Lupyan & Dale 2010; Bentz &
Winter 2013; Sinnemäki & Di Garbo 2018). Few languages of our sample qualify as languages of
wider communication (e.g. Kituba and Kinshasa Lingala) and it is thus not surprising that the ex-
pected ‘simpli�cation e�ect’ in the domain of gender marking only appears in the models where
these languages are included. Conversely, our sample includes many languages that are (extremely)
localized, i.e. used as languages that outsiders do not learn. It seems to us that the number of L1
speakers is thus less meaningful in this context, as those dynamics of language restructuring that
the number of L1 speakers variable a�empts to capture in big languages occurs relatively infre-
quently in our data set. In our sample, the e�ect that language contact may have on the typology

1In our sample, �ve languages out of 179 have a population size higher than one million speakers. �ese are, in ascending
order of population size as documented by Ethnologue (Lewis et al. 2016): Fang (1.071.900 L1 speakers), the Congo
variety of Kituba (1.160.000 L1 speakers), Kimbundu (1.700.000 L1 speakers), Kinshasa Lingala (2.040.000 L1 speak-
ers), the Democratic Republic of Congo variety of Kituba (4.200.000 L1 speakers), South-Central Kikongo (5.016.500 L1
speakers). Out of these �ve languages, only Fang has a gender system with only syntactic agreement.
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of gender is more directly and adequately captured by the other sociogeographic measures we
employ.

We do not have an immediate explanation for the e�ect we �nd in model syn counts Glot int no L1 outl
(Figure 3d), where a bigger number of targets taking syntactic agreement is associated with a
higher number of speakers. We can observe several languages with a reasonably large number
of speakers and many targets that agree syntactically; the two languages with syntactic agree-
ment on 14 targets, Akoose and Mbala at the far right of Figure 10 in the main text, are spoken
by 100.000 and 200.000 speakers, respectively. Languages with a large number of speakers and
many targets that agree syntactically may ‘resist’ restructuring on the basis of being surrounded
by similar languages.
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Figure 3: Comparison of posterior distribution of �xed e�ects of models reported on in the main text (le�) and
correlate models without the 15 languages with 400.000 speakers or more (right)
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5 Models testing the influence of languages with only
animacy-based gender or no gender

Figure 4 is a comparison of the three main models reported on in the main text (le�) and corre-
late models without the 17 languages with only animacy-based agreement or no gender (right). It
shows that, with these 17 languages excluded from the data set, 1) for the binary typology, the ef-
fect for current rainforest overlap disappears; 2) for the number of targets that agree syntactically,
the e�ects from sharing a border with Ubangi / Central Sudanic and number of L1 speakers dis-
appear, instead there are e�ects from latitude and current rainforest overlap; 3) for the number of
targets marked for animacy-based gender, the e�ect for longitude disappears.

�is suggests that the 17 languages with only animacy-based agreement or no gender are im-
portant for the sociolinguistic typology of gender systems in NW Bantu, especially regarding the
number of L1 speakers variable, which does not appear in any of the models excluding these lan-
guages.
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Figure 4: Comparison of posterior distribution of �xed e�ects of models reported on in the main text (le�) and
correlate models without the 17 languages with only animacy-based agreement or no gender (right)
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6 Models testing the influence of the predictor sharing a border
with Ubangi/Central Sudanic

Figure 5 is a comparison of the three main models reported on in the main text (le�) and corre-
late models without including the predictor sharing a border with Ubangi/Central Sudanic. We
suspected that if this relevant and sometimes quite strong predictor is excluded, other geographi-
cal predictors (longitude, latitude, current rainforest overlap, and ancestor in rainforest) might be-
come relevant predictors. A�er all, these all speak towards contact-induced change in the north-
ern Bantu borderlands in one way or another.

However, our suspicion was not justi�ed. 1) For the binary typology, the other signi�cant ef-
fect in model bin Glot int, current rainforest overlap, remains signi�cant; 2) for the number of
targets that agree syntactically, the e�ect of number of L1 speakers remains signi�cant too; 3) for
the number of targets marked for animacy-based gender, the e�ect for latitude disappears. No
new relevant e�ects turn up, suggesting that these measures speak to di�erent factors (see also
Figure 9 in the main text).
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Figure 5: Comparison of posterior distribution of �xed e�ects of models reported on in the main text (le�) and
correlate models without border with Ubangi/Central Sudanic as predictor (right)
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7 Models including random slopes for relevant predictors

Figures 6, 7, and 8 give the posterior distribution of �xed e�ects of the models reported on in the
main text (bin Glot int, syn counts Glot int, and ani counts Glot int) in comparison with models
to which random slopes are added for each of the signi�cant e�ects reported on in the main text.

In all cases, the e�ect disappears when a random slope for that predictor is added, while the
rest of the model stays similar to the model without the random slope (which is hard to observe
because of the wide posterior distribution of variables with random slopes). �e only exception
is model ani counts Glot int slope longitude, which includes a random slope on longitude; in this
model, the e�ect for latitude also disappears.

In all of these models, the random slope on the various predictors is a signi�cant component
judged by the 95% con�dence interval; all of these exclude zero. However, these models were hard
to �t because plots of the MCMC posterior distributions looked capped. We intended to report on
formal model comparison using the R package ‘loo’ (Vehtari et al. 2017), but were unable to as we
could not estimate ‘loo’ or WAIC criterions for these models. We suspect this may be due to poor
�t of these models, regardless of our e�orts to improve their �t (following suggestions by brms,
such as manipulating brms’ se�ings such as ‘adapt delta’ and ‘max treedepth’, and running the
chains for more iterations).

Why are random slopes important for GLMMs? Because they are the only factor that can
model di�erences in the relationship between the predictor and the response variable across ge-
nealogical groups (genealogical groups in our study are the major subgroups as identi�ed by Glot-
tolog (Hammarström et al. 2018) or various genealogical subgroups captured by Koile et al.’s (sub-
mi�ed) phylogenetic trees). Imagine the following example: in the middle of an extended area, we
have a cluster of languages with no gender, surrounded by languages with gender. A genealogi-
cal border runs right trough the middle of this cluster of genderless languages, dividing the area
in two genealogical groups (‘Western’ and ‘Eastern’). �e slope of longitude as an explanatory
variable on type of gender system will be positive in one genealogical group and negative in the
other. Such di�erences can only be captured by random slopes.

Most statisticians (Barr et al. 2013 is the go-to citation) argue for ‘full’ models in which non-
independence in the data is accounted for using both random intercepts and random slopes. How-
ever, there are also researchers that argue for a more nuanced approach (Matuschek et al. 2017;
Coupe 2018: Winter 2020). We side with the la�er group. �ere are many situations in which
random slopes are needed, such as accounting for per-subject and per-item di�erences in psy-
cholinguistics (Barr et al. 2013; Seedor� et al. 2019) and for accounting for genealogical and geo-
graphical non-independence in sociolinguistic typological studies that have a world-wide sample
(Lupyan & Dale 2010; Atkinson 2011; Jaeger et al. 2011; Coupe 2018). However, as noted by Ma-
tuschek et al. (2017), random slopes that are not supported by su�cient data can reduce power,
and it can be very di�cult to tell whether the disappearance of observed e�ects when adding ran-
dom slopes re�ects a lack of power or a successful a�empt to deal with type I errors (in our case,
a type I error would be concluding that there is a correlation between NWB gender systems and
demographic/geographic variables, while such a correlation is in fact due to shared descent).

We suspect that, in our case, the disappearance of observed e�ects (as reported in Figures 6, 7,
and 8 in the main text) when adding random slopes (as reported in Figures 6, 7, and 8) is at least
in part due to lack of power. We generally have problems in ��ing these models despite obliging
to brms’ (Bürkner 2017) warnings, and could not conduct model comparison with loo (Vehtari
et al. 2017).2 How could we a�empt to increase statistical power?

Statistical power depends on e�ect size, variability, and sample size (Winter 2020: 174) as well
as their interaction. �ere is an immense literature on this topic, because experimental and survey-
based research can to some extent manipulate all of these three factors, and researchers have

2However, since the random slopes were relevant components, we suspect model comparison would be inconclusive, i.e.
small/inconclusive amounts of support for those models that include random slopes.
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Figure 6: Comparison of posterior distribution of �xed e�ects of one of the models reported on in the main
text (bin Glot int) and correlate models with random slopes added for relevant e�ects in bin Glot int,
with a random slope for current rainforest overlap (bin Glot int slope RF overlap) and a random
slope for sharing border with Ubangi / Central Sudanic (bin Glot int slope border U S)
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Figure 7: Comparison of posterior distribution of �xed e�ects of one of the models reported on in
the main text (syn counts Glot int) and correlate models with random slopes added for
relevant e�ects in syn counts Glot int, with a random slope for number of L1 speakers
(syn counts Glot int slope L1) and a random slope for sharing border with Ubangi / Central Su-
danic (syn counts Glot int slope border U S)
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(d) Model: ani_counts_Glot_int_slope_burder_U_S

Figure 8: Comparison of posterior distribution of �xed e�ects of one of the models reported on in the main
text (ani counts Glot int) and correlate models with random slopes added for relevant e�ects in
bin Glot int, with a random slope for longitude (ani counts Glot int slope longitude), a random slop
for latitude (ani counts Glot int slope latitude) and a random slope for sharing border with Ubangi /
Central Sudanic (ani counts Glot int slope burder U S)
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asked which manipulations lead to the required power - a luxury typologists do not have, as will
become clear in the following. First of all, e�ect size. E�ect size is a way of quantifying the size
of the di�erence between two or more groups. We can manipulate it in our measurements, for
instance by making a psycholinguistic task harder, potentially increasing the di�erence between
test and control group. Large variability within groups, contrary to what one may �rst think, af-
fects statistical power negatively because it implies a larger overlap in the measurements between
groups; hence we would require a larger sample size in order to increase resolution. Sample size
is the most straightforward one, the more data one has, the be�er (Winter 2020: 267). Simulation
studies (Scherbaum & Ferreter 2009, Maas & Hox 2005) suggest that in multilevel models such as
ours, the number of groups (in the current study: genealogical subgroups) is more important than
the level of individuals (languages).

Typological measure design with an eye on increasing e�ect size should be possible. In fact,
we can observe this in some sense also in the current study, as the counts of the number of tar-
gets that take syntactic/animacy-based agreement seem to be more sensitive measures than the
binary typology. We may of course devise other measures in this light; we discuss this topic in
Section 5 in the main text. Variability and sample size, however, are very di�cult to manipulate in
(sociolinguistic) typological studies (for similar considerations, see also Piantadosi & Gibson 2014).
So far, sparse sampling has turned out to be a problem for typological studies with a world-wide
sampling (see Atkinson 2011, Jaeger et al. 2011). Here we aimed for an exhaustive sample and still
face power problems. We included 176 languages distributed over 6 genealogical groups (Glot-
tolog, Hammarström et al. 2018), and some of these groups simply are very small: Abaduan: 22
languages; East Bantu: 12;3 Lebonya: 6; Mbam-Bube: 15. Ideally, we would have more than six
groups - but of course, the Bantu genealogical tree is a (relatively) �xed concept, we cannot con-
jure up more Bantu subgroups.4 It is also far from clear that in a typological context, it is indeed
the number of groups and not the number of individuals that needs to be increased. Jaeger et al.
(2011: Ap. C) show how hard it is to show an e�ect between phonemic inventory and distance
from West Africa (data from Atkinson 2011) including random slopes even with a minimum of 10
languages per group.

Additionally, we would argue that not all predictors need to be ��ed using random slopes all
the time, following Winter’s (2020: 242) recommendation to reason about the most appropriate
model, given the data and theory. We would argue that the number of L1 speakers in our study,
i.e. within the NWB context, does not need a random slope for the following reason. We use ran-
dom intercepts and slopes to account for genealogical relatedness. For a world-wide sample, we
can imagine that the number of L1 speakers has di�erent e�ects on typological variables across
di�erent families (see Bentz et al. 2015: Fig. 7 for an example of across-family di�erences in the
relationship between lexical diversity and number of L2 speakers). But since we �nd very lit-
tle di�erence in the number of L1 speakers across NW Bantu Glo�olog groupings (see Figure 5
in the main text)5, we cannot imagine that there would be an e�ect of genealogical relatedness
for this variable, i.e. that the number of L1 speakers would have a di�erent interaction with the
type of gender systems across genealogical groupings. We leave the discussion regarding random
slopes for sociolinguistic typological studies here and hope for fruitful discussion regarding these
ma�ers in future work.

312 East Bantu languages have been included in the current sample; the East Bantu subgroup includes 253 languages
according to Glo�olog Hammarström et al. 2018.

4We could of course extend our sample to the entire Bantu family, but this would not help necessarily - in Glo�olog
(Hammarström et al. 2018), Narrow Bantu has 559 languages in the same six subgroups featured in the current study
(counting Mbam-Bube as a single subgroup as we did). Another solution might be to use genealogical groupings lower
down in the phylogenetic tree; Central-Western Bantu for instance has 11 further subgroups in Glo�olog. �is issue
needs further investigation.

5�e small di�erences that we do observe may be argued to be due to the small size of some of the Glo�olog groupings,
such as Lebonya and Mbam.
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8 MCA

We conducted analyses on three types of measures: the binary typology (described in the main
text), the number of targets that receive syntactic agreement /animacy-based agreement (described
in the main text), and the two �rst and most important dimensions of a Multiple Correspondence
Analysis conducted on the full data set. �is third dependent measure, MCA dimensions, was not
introduced in the main text, but is based on Di Garbo & Verkerk (Accepted, 2021). MCA stands
for multiple correspondence analysis, a method of data analysis which is very similar to the bet-
ter known principal component analysis (PCA). Both methods are used to detect and represent
structures in a data set by transforming potentially correlated variables into a smaller set of vari-
ables, called components or dimensions, which are no longer correlated and which best describe
the variation a�ested in the data set. While PCA is used for continuous variables and is thus not
applicable to our data set, MCA deals with categorical variables, like the ones we use in our ques-
tionnaire. Another type of factorical analysis that we could use is Multiple Factor Analysis (MFA),
which would allows to include both continuous measures/counts (such as the questions on the
number of noun class forms and agreement classes listed in Appendix A in the main text) and the
categorical variables we can work with for MCA.

We conducted MCA analyses on the answers to all the questions included in our questionnaire
(see Appendix A in the main text), that is both the binary questions on syntactic and animacy-
based agreement, and the set of additional questions which concludes the coding sheet), using
the package FactoMineR in R (Lê et al. 2008, R Core Team 2017). �e results are presented in Fig-
ure 9, which displays the two �rst (most important) dimensions of the MCA analyses. �e �rst
and second dimensions together capture around 50% of the variability in the data set. �e third,
fourth, …, nth dimension explain a lower and lower proportion and are not further considered
here.

Figure 9 suggests that we can identify one main cluster of languages from the MCA analysis,
that is a triangle-shaped cluster to the center-le�. �e rest of the data points are spread through-
out the center-right of the typological space delimited by the �rst dimension. We a�empted to
link these results to the four-way typology discussed in the main text using color-coding. We can
observe that the center-le� triangle cluster contains languages with only syntactic agreement or
a combination of syntactic and animacy-based agreement. �e languages of these two types show
greater similarity to each other as compared the two other types (languages with only animacy-
based gender and languages with no gender). �ese la�er two types are sca�ered throughout the
remainder of the space and display no clustering. �e second MCA dimension that is plo�ed onto
the y-axis distinguishes between languages with only syntactic agreement (in black) as they have
a negative loading on Dimension 2, and languages with both syntactic and animacy-based agree-
ment (in blue) that load positively on Dimension 2. Since these two MCA Dimensions seem to
capture variation in gender marking systems quite nicely, we include them here as an alternative
dependent measure to report on.

Figure 10 displays the results of these analyses. �e model using the �rst MCA dimension as
independent measure has two relevant (positive) e�ects, longitude and current rainforest over-
lap; the model using the second MCA dimension as independent measure has very wide predic-
tor posterior distributions, with no relevant predictors. When we add random slopes to model
MCA Dim1 Glot int for longitude (MCA Dim1 Glot int slope longitude) and current rainforest
overlap
(MCA Dim1 Glot int slope RF overlap), the e�ects are no longer signi�cant, matching the pa�ern
that we �nd in section 7.

From this we conclude that the second MCA dimension does not carry enough signal regard-
ing the type of gender system; as can be observed in Figure 9, many languages with only syn-
tactic agreement and languages with both syntactic and animacy-based agreement are very con-
densed in a small part of the Figure. �e �rst MCA dimension, however, is an interesting depen-
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Figure 9: First two dimensions from multiple correspondence analysis (MCA) on the entire questionnaire
including the additional questions. �e �rst dimension (x-axis) captures 38% of the variance, the
second dimension (y-axis) captures 12%. �is Figure has been taken from: Di Garbo, Francesca, and
Annemarie Verkerk. 2022. ‘A Typology of Northwestern Bantu Gender Systems’. Linguistics.
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dent measure that correlates highly with the four-way typology we proposed in Section 2.3 in the
main text. It is unsurprising therefore that the MCA Dim1 Glot int model shows an e�ect for cur-
rent rainforest overlap, just as the bin Glot int reported on in Figure 6 in the main text. However,
the languages with only animacy-based agreement or no gender at all seem to be driving this ef-
fect, and the MCA Dimensions do not capture di�erences between languages with only syntactic
agreement or both syntactic and animacy-based agreement. �e questionnaire (Appendix A in the
main text) actually emphasizes di�erences between the former types because certain questions
are only relevant for languages with only animacy-based gender marking or no gender at all, and
thus the di�erences between these languages receive undue weight. While we report the results
here to indicate that we are open to quantifying gender systems in various di�erent ways, we also
think that not all of these di�erent ways may do justice to the nature of the data. In sum, using
MCA to construct continuous measures of NWB gender marking seems useful for obtaining infor-
mation about the di�erences between languages with heavily restructured gender systems, but not
as a more comprehensive typology of NWB gender systems.
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Figure 10: Comparison of posterior distribution of �xed e�ects of models using the �rst and second
MCA Dimension, using a random intercept using Glo�olog groupings (MCA Dim1 Glot int
and MCA Dim2 Glot int), as well as an additional random slope on selected predictors
(MCA Dim1 Glot int slope longitude and MCA Dim1 Glot int slope RF overlap)
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