Animal Biology

Sex-relevant genes in the embryo stage of Chinese soft-shelled turtles as revealed by RNA-Seq analysis

Xianwen Zhou ${ }^{1,2}$, Hui Luo ${ }^{3}$, Dan Zeng ${ }^{1}$, Yazhou Hu ${ }^{1}$, Pei Wang ${ }^{1}$, Gang Xiong ${ }^{4, *}$ and Xiaoqing Wang ${ }^{1, *}$
${ }^{1}$ College of Animal Science \& Technology, Hunan Agricultural University, Changsha 410128, Hunan, China
${ }^{2}$ Affair Center of Animal Husbandry and Aquaculture in XiangXi Autonomous Prefecture, Jishou 416000, Hunan, China
${ }^{3}$ Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Southwest University College of Animal Science, Chongqing 400715, China
${ }^{4}$ Department of Animal Science and Technology, Hunan Biological Electromechanical Vocational and Technical College, Changsha 410126, Hunan, China
*Corresponding author; e-mails: wangxiao8259@126.com; xionggang709@126.com

Supplementary material

Table S1.

Summary of clean data using the Illumina Hiseq X Ten platform.

Stages	Sample	Clean reads pairs	Clean base (bp)	Length	Q20 (\%)	Q30 (\%)	GC (\%)
Male in gonadal sex	A1	24,709,984	7,412,995,200	150;150	96.7;96.8	92.7;92.6	51.4;51.3
differentiation	A2	34,552,664	10,365,799,200	150;150	95.2;92.0	93.6;88.8	48.8;48.6
stages	A3	38,637,511	11,591,253,300	150;150	95.0;91.8	93.4;88.7	49.9;49.8
Female in gonadal	B1	24,313,629	7,294,088,700	150;150	96.5;96.3	92.2;91.6	55.8;55.8
sex differentiation	B2	24,843,892	7,453,167,600	150;150	96.4;96.3	92.0;91.8	56.7;56.7
stages	B3	23,315,748	6,994,724,400	150;150	97.1;95.7	95.6;93.7	55.5;55.5
Male in sex	C1	18,886,099	5,665,829,700	150;150	96.5;94.8	91.7;88.4	52.0;51.8
determination	C2	19,154,060	5,746,218,000	150;150	96.5;95.1	91.7;88.9	51.7;51.6
stages	C3	21,580,489	6,474,146,700	150;150	96.4;95.0	91.5;88.8	52.5;52.3
Female in sex	D1	26,366,637	7,909,991,100	150;150	96.5;94.4	91.7;87.5	51.9;51.7
determination	D2	21,256,419	6,376,925,700	150;150	96.5;95.3	91.7;89.4	52.9;52.7
stages	D3	19,449,892	5,834,967,600	150;150	96.6;95.5	91.7;89.6	52.4;52.2
Male in shelling	E1	27,690,009	8,307,002,700	150;150	97.1;95.7	93.2;89.5	52.7;52.6
stage	E2	29,140,514	8,742,154,200	150;150	97.2;95.8	93.4;89.8	54.1;54.0
	E3	26,368,246	7,910,473,800	150;150	97.2;95.9	93.3;90.1	55.1;55.1
Female in shelling	F1	29,425,992	8,827,797,600	150;150	97.0;96.2	93.1;90.9	54.5;54.4
stages	F2	28,082,744	8,424,823,200	150;150	97.2;95.9	93.3;89.9	52.6;52.6
	F3	26,227,180	7,868,154,000	150;150	97.2;96.2	93.4;90.7	54.3;54.3

Table S2.

Each sample aligned to the reference genome total reads of Chinese soft-shelled turtles.

E1	$55,380,018$	$31,543,075$	$16,104,160$	311,499	$15,438,915$	297,984
		(57.0%)	(58.2%)	(1.9%)	(55.8%)	(1.9%)
E2	$58,281,028$	$32,117,296$	$16,388,728$	320,140	$15,728,568$	311,244
		(55.1%)	(56.2%)	(2.0%)	(54.0%)	(2.0%)
E3	$52,736,492$	$27,951,571$	$14,231,253$	359,773	$13,720,318$	352,240
		(53.0%)	(54.0%)	(2.5%)	(52.0%)	(2.6%)
F1	$58,851,984$	$30,175,676$	$15,258,560$	393,529	$14,917,116$	383,344
		(51.3%)	(51.9%)	(2.6%)	(50.7%)	(2.6%)
F2	$56,165,488$	$32,423,269$	$16,529,416$	363,604	$15,893,853$	350,080
		(57.7%)	(58.9%)	(2.2%)	(56.6%)	(2.2%)
F3	$52,454,360$	$27,757,051$	$14,070,685$	346,991	$13,686,366$	340,640
		(52.9%)	(53.6%)	(2.5%)	(52.2%)	(2.5%)

Table S3.

Summary of sample reads and their mapping status.

Sample	Total read pairs Total mapped reads	Uniq mapped reads	Multiple mapped reads	
A1	$24,709,984$	$14,517,388(58.75 \%)$	$3,456,903(13.99 \%)$	$11,060,485(44.76 \%)$
A2	$34,552,664$	$20,809,298(60.22 \%)$	$4,596,356(13.30 \%)$	$16,212,942(46.92 \%)$
A3	$38,637,511$	$22,344,985(57.83 \%)$	$5,175,927(13.40 \%)$	$17,169,058(44.44 \%)$
B1	$24,313,629$	$11,567,834(47.58 \%)$	$2,592,375(10.66 \%)$	$8,975,459(36.92 \%)$
B2	$24,843,892$	$11,401,288(45.89 \%)$	$2,677,789(10.78 \%)$	$8,723,499(35.11 \%)$
B3	$23,315,748$	$10,989,341(47.13 \%)$	$2,553,959(10.95 \%)$	$8,435,382(36.18 \%)$
C1	$18,886,099$	$10,194,243(53.98 \%)$	$2,067,839(10.95 \%)$	$8,126,404(43.03 \%)$
C2	$19,154,060$	$10,643,698(55.57 \%)$	$2,246,555(11.73 \%)$	$8,397,143(43.84 \%)$
C3	$21,580,489$	$11,442,259(53.02 \%)$	$2,342,090(10.85 \%)$	$9,100,169(42.17 \%)$
D1	$26,366,637$	$14,326,931(54.34 \%)$	$2,818,323(10.69 \%)$	$11,508,608(43.65 \%)$
D2	$21,256,419$	$11,158,127(52.49 \%)$	$2,391,190(11.25 \%)$	$8,766,937(41.24 \%)$
D3	$19,449,892$	$10,470,688(53.83 \%)$	$2,113,241(10.87 \%)$	$8,357,447(42.97 \%)$
E1	$27,690,009$	$14,521,674(52.44 \%)$	$3,655,293(13.20 \%)$	$10,866,381(39.24 \%)$
E2	$29,140,514$	$14,623,017(50.18 \%)$	$3,225,883(11.07 \%)$	$11,397,134(39.11 \%)$
E3	$26,368,246$	$12,551,704(47.60 \%)$	$3,065,246(11.62 \%)$	$9,486,458(35.98 \%)$
F1	$29,425,992$	$14,413,913(48.98 \%)$	$3,511,737(11.93 \%)$	$10,902,176(37.05 \%)$
F2	$28,082,744$	$14,756,366(52.55 \%)$	$3,476,046(12.38 \%)$	$11,280,320(40.17 \%)$
F3	$26,227,180$	$12,794,070(48.78 \%)$	$2,919,686(11.13 \%)$	$9,874,384(37.65 \%)$

Table S4.

Statistical analysis of differentially expressed genes.

Sample	Expressed genes	Total genes	0	0-1	1-3	3-15	15-60	>60
A1	31,202	47,265	$\begin{aligned} & 16,063 \\ & (33.98 \%) \end{aligned}$	$\begin{aligned} & 12,510 \\ & (26.47 \%) \end{aligned}$	$\begin{aligned} & 5,141 \\ & (10.88 \%) \end{aligned}$	$\begin{aligned} & 7,826 \\ & (16.56 \%) \end{aligned}$	$\begin{aligned} & 4,097 \\ & (8.67 \%) \end{aligned}$	$\begin{aligned} & 1,628 \\ & (3.44 \%) \end{aligned}$
A2	32,047	47,265	$\begin{aligned} & 15,218 \\ & (32.20 \%) \end{aligned}$	$\begin{aligned} & 13,320 \\ & (28.18 \%) \end{aligned}$	$\begin{aligned} & 5,363 \\ & (11.35 \%) \end{aligned}$	$\begin{aligned} & 7,728 \\ & (16.35 \%) \end{aligned}$	$\begin{aligned} & 4,068 \\ & (8.61 \%) \end{aligned}$	$\begin{aligned} & 1,568 \\ & (3.32 \%) \end{aligned}$
A3	32,237	47,265	$\begin{aligned} & 15,028 \\ & (31.80 \%) \end{aligned}$	$\begin{aligned} & 13,248 \\ & (28.03 \%) \end{aligned}$	$\begin{aligned} & 5,372 \\ & (11.37 \%) \end{aligned}$	$\begin{aligned} & 8,002 \\ & (16.93 \%) \end{aligned}$	$\begin{aligned} & 4,012 \\ & (8.49 \%) \end{aligned}$	$\begin{aligned} & 1,603 \\ & (3.39 \%) \end{aligned}$
B1	31,095	47,265	$\begin{aligned} & 16,170 \\ & (34.21 \%) \end{aligned}$	$\begin{aligned} & 11,302 \\ & (23.91 \%) \end{aligned}$	$\begin{aligned} & 5,329 \\ & (11.27 \%) \end{aligned}$	$\begin{aligned} & 8,189 \\ & (17.33 \%) \end{aligned}$	$\begin{aligned} & 4,315 \\ & (9.13 \%) \end{aligned}$	$\begin{aligned} & 1,960 \\ & (4.15 \%) \end{aligned}$
B2	31,888	47,265	$\begin{aligned} & 15,377 \\ & (32.53 \%) \end{aligned}$	$\begin{aligned} & 11,461 \\ & (24.25 \%) \end{aligned}$	$\begin{aligned} & 5,692 \\ & (12.04 \%) \end{aligned}$	$\begin{aligned} & 8,611 \\ & (18.22 \%) \end{aligned}$	$\begin{aligned} & 4,298 \\ & (9.09 \%) \end{aligned}$	$\begin{aligned} & 1,826 \\ & (3.86 \%) \end{aligned}$
B3	30,607	47,265	$\begin{aligned} & 16,658 \\ & (35.24 \%) \end{aligned}$	$\begin{aligned} & 10,935 \\ & (23.14 \%) \end{aligned}$	$\begin{aligned} & 5,294 \\ & (11.20 \%) \end{aligned}$	$\begin{aligned} & 8,128 \\ & (17.20 \%) \end{aligned}$	$\begin{aligned} & 4,329 \\ & (9.16 \%) \end{aligned}$	$\begin{aligned} & 1,921 \\ & (4.06 \%) \end{aligned}$
C1	29,129	47,265	$\begin{aligned} & 18,136 \\ & (38.37 \%) \end{aligned}$	$\begin{aligned} & 10,536 \\ & (22.29 \%) \end{aligned}$	$\begin{aligned} & 4,661 \\ & (9.86 \%) \end{aligned}$	$\begin{aligned} & 7,884 \\ & (16.68 \%) \end{aligned}$	$\begin{aligned} & 4,304 \\ & (9.11 \%) \end{aligned}$	$\begin{aligned} & 1,744 \\ & (3.69 \%) \end{aligned}$
C2	28,595	47,265	$\begin{aligned} & 18,670 \\ & (39.50 \%) \end{aligned}$	$\begin{aligned} & 10,528 \\ & (22.27 \%) \end{aligned}$	$\begin{aligned} & 4,427 \\ & (9.37 \%) \end{aligned}$	$\begin{aligned} & 7,679 \\ & (16.25 \%) \end{aligned}$	$\begin{aligned} & 4,222 \\ & (8.93 \%) \end{aligned}$	$\begin{aligned} & 1,739 \\ & (3.68 \%) \end{aligned}$
C3	29,821	47,265	$\begin{aligned} & 17,444 \\ & (36.91 \%) \end{aligned}$	$\begin{aligned} & 11,044 \\ & (23.37 \%) \end{aligned}$	$\begin{aligned} & 4,845 \\ & (10.25 \%) \end{aligned}$	$\begin{aligned} & 7,821 \\ & (16.55 \%) \end{aligned}$	$\begin{aligned} & 4,294 \\ & (9.08 \%) \end{aligned}$	$\begin{aligned} & 1,817 \\ & (3.84 \%) \end{aligned}$
D1	30,599	47,265	$\begin{aligned} & 16,666 \\ & (35.26 \%) \end{aligned}$	$\begin{aligned} & 11,636 \\ & (24.62 \%) \end{aligned}$	$\begin{aligned} & 4,699 \\ & (9.94 \%) \end{aligned}$	$\begin{aligned} & 7,982 \\ & (16.89 \%) \end{aligned}$	$\begin{aligned} & 4,497 \\ & (9.51 \%) \end{aligned}$	$\begin{aligned} & 1,785 \\ & (3.78 \%) \end{aligned}$
D2	30,075	47,265	$\begin{aligned} & 17,190 \\ & (36.37 \%) \end{aligned}$	$\begin{aligned} & 10,880 \\ & (23.02 \%) \end{aligned}$	$\begin{aligned} & 4,900 \\ & (10.37 \%) \end{aligned}$	$\begin{aligned} & 8,214 \\ & (17.38 \%) \end{aligned}$	$\begin{aligned} & 4,304 \\ & (9.11 \%) \end{aligned}$	$\begin{aligned} & 1,777 \\ & (3.76 \%) \end{aligned}$
D3	29,536	47,265	$\begin{aligned} & 17,729 \\ & (37.51 \%) \end{aligned}$	$\begin{aligned} & 10,519 \\ & (22.26 \%) \end{aligned}$	$\begin{aligned} & 4,647 \\ & (9.83 \%) \end{aligned}$	$\begin{aligned} & 8,109 \\ & (17.16 \%) \end{aligned}$	$\begin{aligned} & 4,437 \\ & (9.39 \%) \end{aligned}$	$\begin{aligned} & 1,824 \\ & (3.86 \%) \end{aligned}$
E1	27,812	47,265	$\begin{aligned} & 19,453 \\ & (41.16 \%) \end{aligned}$	$\begin{aligned} & 11,583 \\ & (24.51 \%) \end{aligned}$	$\begin{aligned} & 4,575 \\ & (9.68 \%) \end{aligned}$	$\begin{aligned} & 6,902 \\ & (14.60 \%) \end{aligned}$	$\begin{aligned} & 3,263 \\ & (6.90 \%) \end{aligned}$	$\begin{aligned} & 1,489 \\ & (3.15 \%) \end{aligned}$
E2	28,374	47,265	$\begin{aligned} & 18,891 \\ & (39.97 \%) \end{aligned}$	$\begin{aligned} & 11,623 \\ & (24.59 \%) \end{aligned}$	$\begin{aligned} & 4,645 \\ & (9.83 \%) \end{aligned}$	$\begin{aligned} & 6,932 \\ & (14.67 \%) \end{aligned}$	$\begin{aligned} & 3,442 \\ & (7.28 \%) \end{aligned}$	$\begin{aligned} & 1,732 \\ & (3.66 \%) \end{aligned}$
E3	28,013	47,265	$\begin{aligned} & 19,252 \\ & (40.73 \%) \end{aligned}$	$\begin{aligned} & 11,199 \\ & (23.69 \%) \end{aligned}$	$\begin{aligned} & 4,915 \\ & \quad(10.40 \%) \end{aligned}$	$\begin{aligned} & 6,982 \\ & (14.77 \%) \end{aligned}$	$\begin{aligned} & 3,275 \\ & (6.93 \%) \end{aligned}$	$\begin{aligned} & 1,642 \\ & (3.47 \%) \end{aligned}$
F1	29,717	47,265	$\begin{aligned} & 17,548 \\ & (37.13 \%) \end{aligned}$	$\begin{aligned} & 11,922 \\ & (25.22 \%) \end{aligned}$	$\begin{aligned} & 5,062 \\ & (10.71 \%) \end{aligned}$	$\begin{aligned} & 7,647 \\ & (16.18 \%) \end{aligned}$	$\begin{aligned} & 3,526 \\ & (7.46 \%) \end{aligned}$	$\begin{aligned} & 1,560 \\ & (3.30 \%) \end{aligned}$
F2	30,234	47,265	$\begin{aligned} & 17,031 \\ & (36.03 \%) \end{aligned}$	$\begin{aligned} & 12,416 \\ & (26.27 \%) \end{aligned}$	$\begin{aligned} & 5,111 \\ & \quad(10.81 \%) \end{aligned}$	$\begin{aligned} & 7,557 \\ & (15.99 \%) \end{aligned}$	$\begin{aligned} & 3,565 \\ & (7.54 \%) \end{aligned}$	$\begin{aligned} & 1,585 \\ & (3.35 \%) \end{aligned}$
F3	30,108	47,265	$\begin{aligned} & 17,157 \\ & (36.30 \%) \end{aligned}$	$\begin{aligned} & 11,669 \\ & (24.69 \%) \end{aligned}$	$\begin{aligned} & 5,364 \\ & (11.35 \%) \end{aligned}$	$\begin{aligned} & 7,711 \\ & (16.31 \%) \end{aligned}$	$\begin{aligned} & 3,685 \\ & (7.80 \%) \\ & \hline \end{aligned}$	$\begin{aligned} & 1,679 \\ & (3.55 \%) \\ & \hline \end{aligned}$

Table S5.

Statistics of significantly differentially expressed genes in Chinese soft-shelled turtle between male and female gonads on 15 to 23 days, 24 to 29 days and 33 to 45 days.

Differentially expressed genes	15 to 23 days	24 to 29 days	33 to 45 days
Upregulated in the female gonad	765	12	196
Downregulated in the female gonad	210	31	104
Total(up-plus downregulated)	975	43	300

Values indicate genes with $\log _{2} \mathrm{FC}>1$ or $\log _{2} \mathrm{FC}<-1$ and false discovery rate (FDR)-corrected P value <0.05 in males compared with females.

Table S6.
2206 genes in Subcluster-1 and annotated information.
[See AB-1542_Table S6.xlsx]

Table S7.

1006 genes in Subcluster-2 and annotated information.
[See AB-1542_Table S7.xlsx]

Table S8.

3689 genes in Subcluster-3 and annotated information.
[See AB-1542_Table S8.xlsx]

