Amphibia-Reptilia

Sex, size and eco-geographic factors affect the feeding ecology of the Iberian adder, *Vipera seoanei*

Ismael Espasandín^{1,*}, Pedro Galán¹, Fernando Martínez-Freiría^{2,3,*}

 Grupo de Investigación en Bioloxía Evolutiva (GIBE), Departamento de Bioloxía, Facultade de Ciencias, Universidade da Coruña, Campus da Zapateira, s/n, 15071, A Coruña, Spain

2 - CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, 4485-661 Vairão, Portugal

3 - BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485 661 Vairão, Portugal

*Corresponding authors; e-mails:ismaelespasandin@gmail.com; fmartinez-freiria@cibio.up.pt

ORCID iDs: Espasandín: 0000-0001-5417-8777; Martínez-Freiria: 0000-0003-2311-8960

Supplementary material

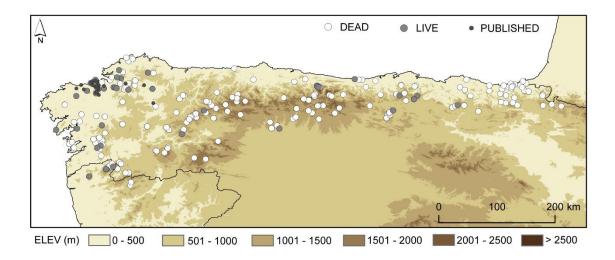


Figure S1. Distribution of specimens examined in this work.

Table S1. List of predictors including set, code, meaning type – units and % of specimens available. It is depicted the codes of Corine Land Cover categories used to construct the habitat eco-geographical predictors.

C - 4	Cala	Maarina	T	Specimens
Set	Code	Meaning	Type - Units	%
_	SVL	snout-vent-length	continuous - mm	88.8
	categorical - F, female; M SEX sex male		categorical - F, female; M - male	77.4
cal	SIZE	size	categorical - J - juvenile, SA - subadult and A - adult	88.8
biological	REPR O	reproductive status of adult females	categorical – reproductive and non-reproductive	52.3
	COL	colouration pattern	categorical - bilineata, cantabrica, classic, melanistic and uniform	88.8
temporal	SEAS ON	season of the year	categorical - WINTER, SPRING, SUMMER and AUTUMN	85.6
	ELEV	elevation above sea level	continuous - m. Asl	95.5
eco-geographic	FORE ST	% of forest, including broad- leaved, coniferous and mixed forest (CLC - 311 + 312 + 313)	continuous - % of pixels	95.5
eco	PAST	% of pastures and grasslands (CLC - 231 + 321)	continuous - % of pixels	95.5

MOO	% of moors and heathlands		055	
RS	(CLC - 322)	continuous - % of pixels	95.5	
AGRI	% of agriculture areas (CLC -	continuous - % of pixels	95.5	
С	211 + 212)	continuous - % or pixels	75.5	
Mean	Annual Maan Tananatata	continuous - °C	95.5	
Т	Annual Mean Temperature	continuous - C	75.5	
МожТ	Max Temperature of Warmest	continuous - °C	05.5	
MaxT	Month	commuous - C	95.5	
APrec	Annual Precipitation	continuous - mm	95.5	
DrPre			05.5	
с	Precipitation of Driest Month	continuous - mm	95.5	

Text S1. Logistic regression analysis of the factors related to feeding frequency.

Stepwise logistic regression to analyse the influence of five predictors, including three biological traits (i.e., SEX, COL and SVL), the temporal-predictor SEASON and the ecogeographic predictor ELEV, in the probability of the binomial distribution 0 – no prey, 1 – prey. Model itineration process started with all predictors included, which were subsequently removed until reaching the most parsimonious solution (i.e. the model with the lowest value of Akaike Information Criterion; AIC).

Model	AIC
PREY ~ SEX + COL + SVL + SEASON + ELEV	243.97
$PREY \sim SEX + COL + SVL + SEASON$	242.08
$PREY \sim SEX + COL + SVL$	240.62
$PREY \sim SEX + SVL$	239.11

The significance of the regression coefficients of predictors is evaluated by Maximum Likelihood χ^2 tests. The effectiveness of the final model is assessed by the Hosmer-Lemeshow and McFadden's pseudo R-squared tests.

-	D				Pr(>χ2
Formula: PREY ~ SEX + SVL	F	Deviance Resid.	DF	Resid. Dev)
			23	309.52	
			9	509.32	
		14,5000	23	205	0.000
SEX	1	14.5228	8	295	0.000

		23		
	3.9855		291.01	0.046
SVL	1	7		

Hosmer and Lemeshow, P = 0.06

McFadden's R2 = 0.28

Logistic regressions performed in R Studio version 1.1.463, using the available family of

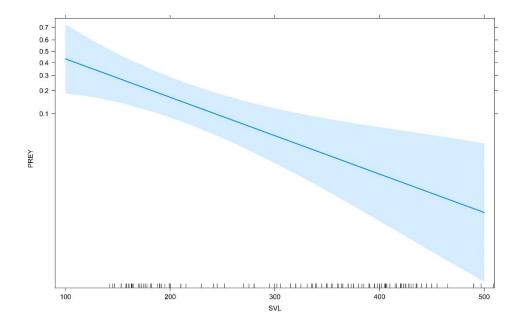
GLM stats in R.

Text S2. Logistic regression analysis of biological and temporal predictors in the dietary consumption of major prey groups.

Stepwise logistic regression to analyse the influence of four factors, including three biological traits (i.e., SEX, COL and SVL) and the temporal-predictor SEASON, in the probability of the binomial distribution consuming one prey group against the other two, i.e., amphibians *vs* reptiles + mammals, reptiles vs amphibians + mammals, mammals *vs* amphibians + reptiles, coding first group as 1 and the other as 0. For each model, the itineration process started with all predictors included, which were subsequently removed until reaching the most parsimonious solution (i.e. the model with the lowest value of Akaike Information Criterion; AIC). The significance of the regression coefficients of predictors is evaluated by Maximum Likelihood χ^2 tests. The effectiveness of the final model is assessed by the Hosmer-Lemeshow and McFadden's pseudo R-squared tests. Logistic regressions performed in R Studio version 1.1.463, using the available family of GLM stats in R.

Model	AIC
PREY ~ SEX + COL + SVL + SEASON	31.96
$PREY \sim COL + SVL + SEASON$	29.96
PREY ~ SVL + SEASON	28.02
PREY ~ SVL	26.09

<u>Amphibians vs reptiles + mammals</u> (n = 15 vs 167)


	D	Deviance		Resid.	Pr(>Chi
formula: PREY ~ SVL	F	Resid.	DF	Dev)

			14	72.919	
			5		
CV/I	1	16.933	14	55.986	0.000
SVL			4		

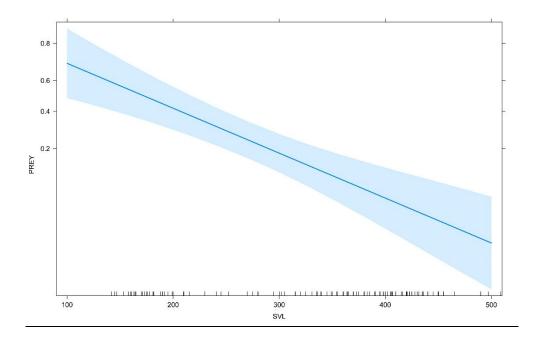
Hosmer and Lemeshow, P =

0.232

McFadden's R2 = 243

Figure S2. Response plot resulting from the logistic regression of the consumption of amphibians according to SVL (in mm).

<u>Reptiles vs amphibians + mammals</u> (n = 31 vs 151)


Model	AIC
PREY ~ SEX + COL + SVL + SEASON	66.58
$PREY \sim SEX + COL + SVL$	64.6
$PREY \sim COL + SVL$	63.2

Formula: PREY ~ COL + SVL	D	Deviance	DF	Resid.	Pr(>Chi
	F	Resid.		Dev)
			11	117.217	
			9		
COL	1	0.027	11	89.202	0.269
			7		
SVL	1	28.042	11	89.229	0.000
			8		

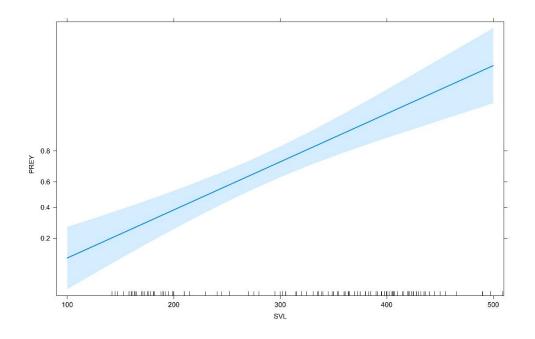
Hosmer and Lemeshow, P =

0.227

McFadden's R2 = -0.205

Figure S3. Response plot resulting from the logistic regression of the consumption of reptiles according to SVL (in mm).

Mammals vs am	phibians + re	ptiles (r	n = 136 vs 46)


Model	AIC
$PREY \sim SEX + COL + SVL + SEASON$	70.13
$PREY \sim SEX + COL + SVL$	68.15
$PREY \sim COL + SVL$	66.69
PREY ~ SVL	66.3

D	Deviance	DF	Resid.	Pr(>Chi
F	Resid.		Dev)
		14	165.29	
		5		
1	56.163	14	109.13	0.000
		4		
	F	F Resid.	F Resid. 14 5 1 56.163 14	F Resid. Dev 14 165.29 5 5 1 56.163 14 109.13

Hosmer and Lemeshow, P =

.34

McFadden's R2 = -0.474

Figure S4. Response plot resulting from the logistic regression of the consumption of mammals according to SVL (in mm).

Text S3. Logistic regression analysis of eco-geographic predictors in the dietary consumption of major prey groups.

Stepwise logistic regression to analyse the influence of eight eco-geographic predictors, four habitat (FOREST, MOORS, PAST and AGRIC) and four climatic (MeanT, MaxT, APrec and DrPrec), in the probability of the binomial distribution consuming one prey group against the other two, i.e., amphibians *vs* reptiles + mammals, reptiles vs amphibians + mammals, mammals *vs* amphibians + reptiles, coding first group as 1 and the other as 0. For each pair of groups, model itineration process started with all predictors included, which were subsequently removed until reaching the most parsimonious solution (i.e. the model with the lowest value of Akaike Information Criterion; AIC). The significance of the regression coefficients of predictors is evaluated by Maximum Likelihood χ^2 tests. The effectiveness of the final model is assessed by the Hosmer-Lemeshow and McFadden's pseudo R-squared tests. Response plots depicting the relation between prey consumption and statistically significant eco-geographic factors are available in Figure 3. Logistic regressions performed in R Studio version 1.1.463, using the available family of GLM stats in R.

<u>Amphibians vs reptiles + mammals</u> (n = 15 vs 167)

Model

AIC

PREY ~ FOREST + MOORS + PAST + AGRIC + MeanT + MaxT + APrec + DrPrec 96.86

PREY ~ FOREST + PAST + AGRIC + MeanT + MaxT + APrec + DrPrec	94.86
$PREY \sim FOREST + PAST + AGRIC + MeanT + APrec + DrPrec$	93.29
$PREY \sim FOREST + PAST + AGRIC + MeanT + APrec$	91.73
PREY ~ FOREST + PAST + AGRIC + APrec	91.35

Formula: PREY ~ FOREST + PAST + AGRIC + APrec	DF	Deviance Resid.	DF	Resid. Dev	Pr(>Chi)
			176	102.734	
FOREST	1	4.368	175	98.367	0.037
PAST	1	1.708	174	96.659	0.191
AGRIC	1	2.527	173	94.132	0.112
APrec	1	12.786	172	81.346	0.000

Hosmer and Lemeshow, P = 0.208

McFadden's R2 = 0.215

<u>Reptiles vs amphibians + mammals</u> (n = 31 vs 151)

Model	AIC
PREY ~ FOREST + MOORS + PAST + AGRIC + MeanT + MaxT + APrec	160.03
+ DrPrec	100.05
$PREY \thicksim FOREST + MOORS + AGRIC + MeanT + MaxT + APrec +$	158.45
DrPrec	150.45
$PREY \sim FOREST + MOORS + AGRIC + MeanT + MaxT + APrec +$	157.45
DrPrec	137.43
PREY ~ FOREST + AGRIC + MeanT + MaxT + APrec	156.27
PREY ~ AGRIC + MeanT + MaxT + APrec	155.27
PREY ~ AGRIC + MaxT + APrec	154.51

Formula: PREY ~ AGRIC + MaxT + Aprec	DF	Deviance Resid.	DF	Resid. Dev	Pr(>Chi)
			176	161.1	
AGRIC	1	4.598	175	156.5	0.032
MaxT	1	7.265	174	149.24	0.007

APrec	1		2.725	173	146.51	0.099
Hosmer and Lemeshow, $P = 0.091$						
McFadden's $R2 = 0.118$						
<u>Mammals vs amphibians + reptiles</u> (n = 136 vs 46)						
Model						AIC
PREY ~ FOREST + MOORS + PAST + AGRIC + MeanT + 1	MaxT + APrec	+ DrPre	c			191.87
PREY ~ FOREST + MOORS + PAST + AGRIC + MeanT + 1	MaxT + DrPrec	:				190.94
PREY ~ FOREST + PAST + AGRIC + MeanT + MaxT + Drl	Prec					189.65
$PREY \sim FOREST + PAST + AGRIC + MeanT + MaxT$						188.82
PREY ~ FOREST + PAST + AGRIC + MaxT						188.53
Formula: PREY ~ FOREST + PAST + AGRIC + MaxT		DF	Deviance Resid.	DF	Resid. Dev	Pr(>Chi)
				176	200.7	

FOREST	1	2.795	175	197.9	0.095
PAST	1	1.155	174	196.75	0.282
AGRIC	1	9.280	173	187.47	0.002
MaxT	1	8.935	172	178.53	0.003

Hosmer and Lemeshow, P = 0.11

McFadden's R2 = 0.132