Remote sensing and citizen science to characterize the ecological niche of an endemic and endangered Costa Rican poison frog

Marina Garrido-Priego ${ }^{1,2,3, *}$, David Aaragonés ${ }^{4}$, H. Christoph Liedtke ${ }^{1}$, Andrew Whitworth ${ }^{3,}$ ${ }^{5}$, Ivan Gomez-Mestre ${ }^{1}$

1 - Department of Ecology and Evolution, Estación Biológica de Doñana (CSIC), 41092 Sevilla, Spain

2 - Division of Behavioural Ecology, Institute of Ecology and Evolution, University of Bern, Bern, Switzerland

3 - Osa Conservation, Conservation Science Team, Washington, DC, 20005, USA
4 - Remote Sensing and GIS Laboratory (LAST-EBD), Estación Biológica de Doñana (CSIC), 41092 Sevilla, Spain

5 - Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
*Corresponding author; e-mail: marina.garridopriego@unibe.ch

ORCID iDs: Garrido-Priego: 0000-0001-6666-7834; Aaragonés: 0000-0003-4989-9005;
Liedtke: 0000-0002-6221-8043; Whitworth: 0000-0001-6197-996X; Gomez-Mestre: 0000-0003-0094-8195

Figure S1. Distribution of the 67 occurrences used to model the ecological niche of P. vittatus. All occurrences are obscured within $3 \mathrm{~km}^{2}$ grid cells encompassing the hidden true location. The map is in scale 1:1,200,000 and Coordinate Reference System (CRS) WGS84.

Text S1.

To get an up-to-date forest cover map of the study area, we mapped the land cover using Sentinel-2 satellite images processed in QGIS (3.10), working in UTM zone 17 north in World Geodesic System 1984 datum. Sentinel-2 offers a view of 13 bands in the visible, near infrared and short-wave infra-red part of the electromagnetic spectrum, defined at $10 \mathrm{~m}, 20 \mathrm{~m}$ and 60 m of spatial resolution (Drusch et al., 2012). A graphic description of the steps taken below to obtain the land cover map can be seen in supplementary fig. S 2 .

To have a map with the smallest possible cloud cover, we acquired images from two dates during Costa Rica's dry season (2 March 2019 and 10 February 2019), previsualized in USGS Earth Explorer (https://earthexplorer.usgs.gov/). The distribution area of P. vittatus covers four different Sentinel-2 tiles: L16PKK, L17PKK, L16PKL, L17PKL; thus, we worked with these four tiles for both dates. We downloaded the 13 bands for each tile from Sentinels Scientific Data Hub (https://sci.hub.copernicus.eu/) using the Semi-Automatic Classification Plugin (SCP) for QGIS (Congedo, 2016). Sentinel-2 offers a wide variety of products depending on the image-processing levels. Level-1C gives information of the top of atmosphere reflectance. Level-2A is the atmospheric correction of Level-1C products, giving the surface reflectance as a result (Drusch et al., 2012; Louis et al., 2016). Thus, we downloaded band 10 on Level-1C to be able to detect cirrus (Baillarin et al., 2012). The rest of bands were downloaded on Level-2A.

Since most of Sentinel-2 bands are in $10 \times 10 \mathrm{~m}$ spatial resolution (Drusch et al., 2012), this was the resolution used (Nivedita Priyadarshini et al., 2018). We also re-projected the tiles from zone 16 N to zone 17 N . Each band was set in a mosaic, setting together the four tiles (L16PKK projected to 17 N, L17PKK, L16PKL projected to 17 N and L17PKL) using SAGA (Conrad et al., 2015).

The four tiles cover an area larger than the total distribution range of P. vittatus, which was therefore comprised within the total study area. Hence, to simplify the analysis, we also applied a mask that encompassed all the area from the coastal line to the contour line of 1,500 m in altitude. We did not set the altitude limit at 550 m (see P. vittatus altitudinal range in species description) because we wanted to analyze whether there could be a potentially suitable area for P. vittatus at higher elevations, even if they may not have been occupied or explored by the species yet. Additionally, we also wanted to consider whether the suitable niche for P. vittatus would extend over the Panama side in the vicinity of the Costa Rican border. Therefore, we included in our study area the Panamanian area included within the tiles used $(1,260.21$ km^{2}). Then, using SCP (Congedo, 2016), the mosaics were stacked to create a raster band set for each date. Afterwards, using the software Idrisi, we obtained the radiometric normalization for both dates using 103 polygons in pseudo-invariant areas (Díaz-Delgado et al., 2016). The radiometric normalization allowed us to compare both images.

To remove the interference of clouds, we applied a cloud-mask for each date. To build these masks we used three bands: band 1 , band 8 and band 10 . we used band 1 to detect most of the clouds. Band 1 (centered at a 443 nm wavelength and called coastal/aerosol) is one of the bands in which is easier to identify clouds (Drusch et al., 2012). It is also important to consider clouds' shadow but, since it is difficult to differentiate them from water bodies, we considered them together. To do so, we used band 8 (centered at 865 nm wavelength, Near Infrared band) to distinguish clouds' shadows (Zhu et al., 2015). Lastly, we used band 10 (centered at 1380 nm wavelength and called the cirrus band) to identify high altitude clouds (Van der Meer et al., 2014).

To differentiate vegetation from other land cover types of the study area, we calculated the Normalized Difference Vegetation Index (NDVI) from the images using the NDVI ratio for Sentinel-2: NDVI $=(\mathrm{B} 8-\mathrm{B} 4) /(\mathrm{B} 8+\mathrm{B} 4)($ Tucker, 1979 $)$. The NDVI is extensively used to
analyze the vegetation cover, allowing us to distinguish between vegetated and not vegetated areas, and even among vegetation types (Wang et al., 2004). Pixels with negative values or close to zero corresponded to non-vegetated areas: water surfaces, urban areas, bare ground and clouds. Pixels with values close to 1 corresponded to dense vegetation. We masked the nondense vegetated areas with values under 0.7 since we wanted to make sure we were then obtaining dense vegetation. This NDVI value of 0.7 is a recurrent value in tropical forests to detect forest areas, avoiding detecting shrublands (e.g., Arroyo-Mora et al., 2005; Baniya et al., 2018; Doughty and Goulden, 2009; Los et al., 2019; Martinuzzi et al., 2008). After applying the NDVI mask for both dates, we combined both images together, using the image from date 02/03/2019 as the main image since it had less cloud cover the image from 10/02/2019. We then filled out the masked clouds' area from 02/03/2019 with the 10/02/2019 image. This way cloud cover from date $02 / 03 / 2019$ was reduced to a 2%. From this point, we kept working on this main image.

We performed an unsupervised ' k-means' classification (Likas et al., 2003) on this main image, clustering the pixels into 35 groups. Each cluster was inspected individually using photointerpretation with high-resolution Google Satellite orthophotos to determine the land cover type illustrated. Clusters that illustrated the same land cover type were grouped together, reclassifying these 35 clusters into 5 spectral classes. We post processed the classification using a sieve filter, which replaces cells' values based on the majority of the continuous neighboring cells. After the classification, we generated a mask for the dense crops (palm, white teak and pineapple) that were grouped together with forest clusters during the non-supervised classification using high-resolution Google Satellite orthophotos. Due to the difficulty in identifying white teak crops from orthophoto images, a few such plantations may not have been properly identified. Since the images used are from Costa Rica's dry season, the Corcovado lagoon was not at its full capacity and appeared as a mixture of pixels with diverse values. Thus,
we identified the area as 'wetland' using the Costa Rican digital atlas from 2014 (OrtizMalavasi, 2016). Finally, all the classes identified were reclassified into 9 categories using highresolution Google Satellite orthophotos: Forest, tall/dense grassland, pasture, mangrove, palm plantation, pineapple plantation, white teak plantation, wetland and non-dense vegetated areas. Hence, obtaining the final product for the land cover map of the study area. We evaluated the land cover classification estimating accuracy and area from the sample data in an error matrix (supplementary text S 1 , table 1). We applied the proportional approaches sample allocations methodologies suggested by Olofsson et al. (2014), using the Cochran's (1977) sample size formula for stratified random sampling. Using this final output, we calculated the percentage of forest over the study area. We then calculated the percentage of forest on every pixel of 1 km^{2}, in order to have every model predictor at the same resolution. To facilitate the analysis, we projected this predictor to geographical coordinates.

Table 1. Error matrix showing the estimated accuracy and area from the land cover classification. This error matrix was built using a total of 399 random points.

	$\begin{aligned} & \stackrel{\rightharpoonup}{\theta} \\ & \stackrel{\theta}{\hat{\theta}} \end{aligned}$				$\begin{aligned} & \text { u } \\ & \ddot{\ddot{0}} \\ & \text { en } \\ & \text { E } \end{aligned}$						$\begin{aligned} & \stackrel{-1}{0} \\ & \stackrel{\rightharpoonup}{\ddot{W}} \end{aligned}$		
1	30	0	0	0	0	0	0		0	0	30	1	45.47
2	0	30	0	0	0	0	0		0	0	30	1	83.17
3	0	0	30	0	0	0	0		0	0	30	1	761.68
4	0	0	0	30	0	0	0		0	0	30	1	11.32
5	0	0	4	0	24	2	0		0	0	30	0,8	419.25
6	0	0	0	0	0	22	7		0	1	30	$\begin{gathered} 0,733 \\ 33 \end{gathered}$	$\begin{gathered} 1064.0 \\ 9 \end{gathered}$

7	0	0	1	0	0	1	80	0	0	82	0,975	3826.5
8	0	0	0	0	0	0	0	30	0	30	1	159.86
9	0	0	0	0	1	4	3	0	99	10	0,961	3855.4
Total	30	30	35	30	25	29	90	30	10	39		10226.
Produc er	1	1	0,857	1	0,9	0,7586	0,88889	1	0,7	0	0,877	85
accura cy			14		6	2			4		19	

References

Arroyo-Mora, J. P., Sánchez-Azofeifa, G. A., Kalacska, M. E. R., Rivard, B., CalvoAlvarado, J. C., \& Janzen, D. H. (2005). Secondary forest detection in a neotropical dry forest landscape using Landsat 7 ETM+ and IKONOS imagery. Biotropica, 37(4), 497507. https://doi.org/10.1111/j.1744-7429.2005.00068.x

Baillarin, S. J., Meygret, A., Dechoz, C., Petrucci, B., Lacherade, S., Tremas, T., Isola, C., Martimort, P., \& Spoto, F. (2012). Sentinel-2 level1 products and image processing performances. IGARSS, 7003-7006.

Baniya, B., Tang, Q., Huang, Z., Sun, S., \& Techato, K. anan. (2018). Spatial and temporal variation of NDVI in response to climate change and the implication for carbon dynamics in Nepal. Forests, 9(6), 1-18. https://doi.org/10.3390/f9060329

Congedo, L. (2016). Semi-Automatic Classification Plugin. https://doi.org/http://dx.doi.org/10.13140/RG.2.2.29474.02242/1

Conrad, O., Bechtel, B., Bock, M., Dietrich, H., Fischer, E., Gerlitz, L., Wehberg, J., Wichmann, V., \& Böhner, J. (2015). System for Automated Geoscientific Analyses (SAGA) v. 2.1.4. Geoscientific Model Development, 8(7), 1991-2007. https://doi.org/10.5194/gmd-8-1991-2015

Díaz-Delgado, R., Aragonés, D., Afán, I., \& Bustamante, J. (2016). Long-term monitoring of the flooding regime and hydroperiod of Doñana marshes with landsat time series (19742014). Remote Sensing, 8(9), 1-19. https://doi.org/10.3390/rs8090775

Doughty, C. E., \& Goulden, M. L. (2009). Seasonal patterns of tropical forest leaf area index and CO2 exchange. Journal of Geophysical Research: Biogeosciences, 114(1), 1-12. https://doi.org/10.1029/2007JG000590

Drusch, M., Del Bello, U., Carlier, S., Colin, O., Fernandez, V., Gascon, F., Hoersch, B., Isola, C., Laberinti, P., Martimort, P., Meygret, A., Spoto, F., Sy, O., Marchese, F., \& Bargellini, P. (2012). Sentinel-2: ESA's Optical High-Resolution Mission for GMES Operational Services. Remote Sensing of Environment, 120, 25-36. https://doi.org/10.1016/j.rse.2011.11.026

Likas, A., Vlassis, N., \& J. Verbeek, J. (2003). The global k-means clustering algorithm. Pattern Recognition, 36(2), 451-461. https://doi.org/10.1016/S0031-3203(02)00060-2

Los, S. O., Street-Perrott, F. A., Loader, N. J., Froyd, C. A., Cuní-Sanchez, A., \& Marchant, R. A. (2019). Sensitivity of a tropical montane cloud forest to climate change, present, past and future: Mt. Marsabit, N. Kenya. Quaternary Science Reviews, 218, 34-48. https://doi.org/10.1016/j.quascirev.2019.06.016

Louis, J., Debaecker, V., Pflug, B., Main-Knorn, M., Bieniarz, J., Mueller-Wilm, U., Cadau, E., \& Gascon, F. (2016). Sentinel-2 SEN2COR: L2A processor for users. European Space Agency, (Special Publication) ESA SP, SP-740(May), 9-13.

Martinuzzi, S., Gould, W. A., Ramos Gonzalez, O. M., Robles, A. M., Maldonado, P. C., Pérez-Buitrago, N., \& Fumero Caban, J. J. (2008). Mapping tropical dry forest habitats integrating Landsat NDVI, Ikonos imagery, and topographic information in the Caribbean Island of Mona. Revista de Biologia Tropical, 56(2), 625-639.
https://doi.org/10.15517/rbt.v56i2.5613

Nivedita Priyadarshini, K., Kumar, M., Rahaman, S. A., \& Nitheshnirmal, S. (2018). a Comparative Study of Advanced Land Use/Land Cover Classification Algorithms Using Sentinel-2 Data. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLII-5(November), 665-670.
https://doi.org/10.5194/isprs-archives-xlii-5-665-2018

Ortiz-Malavasi, E. (2016). Atlas de Costa Rica 2014. In Repositorio del Tecnológico de Costa Rica.

Tucker, C. J. (1979). Red and photographic infrared linear combinations for monitoring vegetation. Remote Sensing of Environment, 8(2), 127-150. https://doi.org/10.1016/0034-4257(79)90013-0

Van der Meer, F. D., van der Werff, H. M. A., \& van Ruitenbeek, F. J. A. (2014). Potential of ESA's Sentinel-2 for geological applications. Remote Sensing of Environment, 148, 124133. https://doi.org/10.1016/j.rse.2014.03.022

Wang, Q., Tenhunen, J., Dinh, N. Q., Reichstein, M., Vesala, T., \& Keronen, P. (2004). Similarities in ground- and satellite-based NDVI time series and their relationship to physiological activity of a Scots pine forest in Finland. Remote Sensing of Environment, 93(1-2), 225-237. https://doi.org/10.1016/j.rse.2004.07.006

Zhu, Z., Wang, S., \& Woodcock, C. E. (2015). Improvement and expansion of the Fmask algorithm: Cloud, cloud shadow, and snow detection for Landsats 4-7, 8, and Sentinel 2 images. Remote Sensing of Environment, 159, 269-277. https://doi.org/10.1016/j.rse.2014.12.014

Figure S2. Schematic representation of the land cover methodology followed.

Table S1. Correlation matrix of all the variables studied: nineteen bioclimatic variables from WorldClim 2.1, distance to asadas, lakes and rivers, elevation, aspect, slope and forest percentage. In bold are the variables we used in the models.

	A
$\begin{array}{llllll} 0 & 0 & 0 \\ \text { N } \\ 0 & 0 \\ \hline & 0 \\ \hline \end{array}$	
$\therefore 0$ or obo珨古	

080\％0－	EEL 0^{-0}	8000^{-1}	9tI $0-0$	0L0＇0－	L90 ${ }^{\circ} 0^{-1}$	060．0－	$\varsigma \varepsilon ⿷^{\circ} 0^{-}$	$\angle L Z \cdot 0^{-1}$	288\％${ }^{-1}$	LLZ＇O－	$08 z^{\circ} 0^{-}$
tsz＇0	$290{ }^{\circ}$	102＊0	$990{ }^{\circ}$	9LI 0^{-}	$660^{\circ} 0$	LILO	カt「0	$860^{\circ} 0$	$960^{\circ} 0$	1010	$680^{\circ} 0$
LSOO	$8 \mathrm{tO}^{\circ} \mathrm{O}$	8200	L200－	L00\％	tzo 0	9000	¢ ¢0\％${ }^{-}$	LSOO	$\varepsilon ¢_{0} 0^{\circ}$	8900	Lt0 0
L100－	＋¢で0－	＋9000－	2900－	ILOO	ていし\％	1000	$8 \mathrm{ILO}^{-}$	£810－	£61．0－	$6 \mathrm{LI} 0^{-}$	＋610
$90 t^{\circ} 0^{-}$	$66 \mathrm{Z}^{\circ} \mathrm{O}$	L810－	カセど0－	SIO\％	$85^{\circ} 0^{-}$	69\％\％－	968．0－	＋88．0－	＋880－	$6 \angle 80^{-}$	2880°
SIO\％${ }^{-}$	0t0 0^{-}	900°	9ع000－	£S0＊0－	1000	¢ ¢0 0^{-}	210\％${ }^{-}$	0L0 0^{-}	ZLO ${ }^{-}$	6900^{-}	ILO＇0
$\varepsilon L I^{\circ} 0$	S00\％ 0	L80\％	szi．0	$6+0 \cdot 0$	0ع0\％	$891^{\circ} 0$	2600	90で0	E0で0	$60{ }^{\circ} 0$	L610
$000{ }^{\text {I }}$	s9e\％ 0	$96 \varepsilon^{\circ} 0$	6290	S90＊－	$8 \varepsilon \varepsilon^{\circ} 0$	Lz900	9IL＇0	カレt＊	6Lt＇0	\＆6t＇0	$6 \varepsilon t^{\circ} 0$
S9E0	$000{ }^{\circ}$	E68\％0	9 Et 0	＋910－	$6 \mathrm{SE}{ }^{\circ}$	$8 \varepsilon^{\circ} 0$	LE9 0	£とE\％0	$0 \varepsilon \varepsilon^{\circ} 0$	でど0	でど0
$96 \varepsilon^{\circ} 0$	E6E0	$000{ }^{\circ}$	$00 z^{\circ} 0$	¢89＊0－	09 ${ }^{\circ} 0$	$06{ }^{\circ} 0$	08t ${ }^{\circ}$	LOで0	$60{ }^{\circ} 0$	でで0	\＆6100
6290	$9 \mathrm{Et} \bullet^{\circ}$	$00 z^{\circ}$	$000 \cdot \mathrm{I}$	$6 ¢^{\prime \prime} 0$	Isで0	Lt8．0	$6 \angle 8.0$	6IE\％0	ててど0	¢zど0	E0c．0
S90＊0－	＋910－	S890－	$6 \mathrm{Sc}^{\circ} 0$	$000{ }^{\text {I }}$	$06 \downarrow^{\circ} 0$	$6 \& t^{\circ} 0$	250\％${ }^{-}$	290\％${ }^{-}$	090＊0－	£L0＇0－	LSO 0^{-}
$8 \varepsilon^{\circ} 0$	$6 ¢^{\circ} 0$	092．0	ISで0	06t 0°	$000 \cdot \mathrm{I}$	¢810	て9t ${ }^{\circ}$	てLIO	LLİO	$981^{\circ} 0$	$19{ }^{\circ} \mathrm{O}$
LZ9＇0	$8 \varepsilon^{\circ} 0$	$06{ }^{\circ} 0$	$\angle \mathrm{t} 8^{\circ}$	$6 \mathrm{E} \mathrm{t}^{\circ}$	¢810	$000^{\circ} \mathrm{I}$	£0L\％	¢¢で0	LEで0	したで0	LIで0
9IL＇0	LE900	$08 t^{\circ}$	$6 \angle 8{ }^{\circ}$	2S0\％${ }^{-}$	2970	E0L\％	$000 \cdot \mathrm{I}$	$888^{\circ} 0$	$68 \varepsilon^{\circ} 0$	$86 \varepsilon^{\circ} 0$	$89 \varepsilon^{\circ} 0$
tくt＇0	£で\％0	LOZ＇0	6Iど0	2900－	2LIO	¢£で0	$88 \varepsilon^{\circ}$	$000^{\circ} \mathrm{I}$	6660	9660	9660
6Lt＊	0 ¢ $\underbrace{\circ} 0$	$60 z^{\circ} 0$	でど0	090＊0－	LLI 0	Lモで0	$688^{\circ} 0$	6660	$000{ }^{\circ}$	966.0	$966{ }^{\circ}$
E6t ${ }^{\circ}$	でど0	でで0	¢zど0	ELO＊${ }^{-}$	$98 \mathrm{I}^{\circ} 0$	させで0	$86 \varepsilon^{\circ} 0$	9660	9660	$000{ }^{\text {I }}$	2660
$6 \mathrm{Et} \vdash^{\circ}$	ててE゚0	E6100	E0ど0	LS000－	$19{ }^{\circ} 0$	LIで0	$89 \varepsilon^{\circ}$	9660	9660	$266{ }^{\circ}$	000 I
6¢E．0－	¢800－	6E1．0－	てマど0－	6900－	عıI．0－	ع0c：0－	¢๕E＊0－	¢9\％＇0－	992\％0－	tLで0－	6 tzro
$80 \mathrm{c}^{\circ} 0$	$61 \varepsilon^{\circ} 0$	てIで0	tsc．0	0t0 0^{-}	$08 \mathrm{I}^{\circ} 0$	ILで0	$91 \downarrow^{\circ} 0$	¢860	¢860	＋860	$6 \angle 60$
$80 t^{\circ} 0$	$91 \varepsilon^{\circ} 0$	SLI＇0	tsで0	£L0＇0－	Oci ${ }^{\circ}$	0LIO	してE．0	tL60	tL60	6960	t 260
$\varepsilon ¢^{\circ} \cdot 0$	$9 ¢ ⿷ 匚 0$	$981^{\circ} 0$	て0ع．0	IZ0＊0－	00で0	£てで0	\mathcal{E} ¢ ${ }^{\circ} 0$	8180	Et8 ${ }^{\circ}$	LZ8．0	\＆z8．0
＋8E\％${ }^{-}$	LtE 0^{-}	8 8で0－	O¢5 ${ }^{\circ}$	\＆800	て\＆で0－	£91．0－	L810－	$9 ¢ 50^{\circ}$	$8 \mathrm{Sc}^{\circ} \mathrm{O}$	2ss．0－	$625^{\circ} 0$
カtt 0^{-}	£610－	102\％ 0	$0 \varepsilon \varepsilon^{\circ} 0^{-}$	てع0＊0－	8LI．0－	81E．0－	StE 0^{-}	しเヤ 0^{-}	0てt•0－	¢てが0－	¢68\％${ }^{-}$
9 $\angle t^{\circ} 0$	Lてど0	$80 z^{\circ} 0$	でど0	1900－	SLIO	L\＆${ }^{\circ} 0$	$06 ¢^{\circ} 0$	$000{ }^{\text {I }}$	$000{ }^{\text {I }}$	L660	9660
61099	81099	LIỌ9	91019	¢ ¢ 19	\dagger ¢¢̣	ε ¢ \bigcirc ¢¢	乙โọq	L 0 O9	010！9	$60 \div 9$	$80!9$

Table S2. AICc and AUC values for the MaxEnt models built to analyse the ecological niche of Phyllobates vittatus in Costa Rica using occurrences collected between 2016 and 2020 and abiotic variables created and obtained in 2020.

Extent	Regularization	Feature	AICc	delta	AUC	AUC
multiplier	class	value	AICc	train	test	
5 km buffer	3	Q	1124.87	0	0.73	0.68
area		LQ	11205.51	0	0.79	0.76
10 km	3	LQ	1088.84	0	0.88	0.87
buffer area						
Total extent	3					
area						

Table S3. Contribution to the characterization of the ecological niche of Phyllobates vittatus in Costa Rica from the MaxEnt model built using occurrences collected between 2016 and 2020 and abiotic variables created and obtained in 2020.

Variable	Meaning	Contribution (\%)
Elevation	Elevation	57.5
Distance from lakes	Distance from lakes	13.7
Forest percentage	Forest percentage	13.4
Bio 7	Temp. annual range	6.9
Bio 15	Prep. Seasonality	3.9
Bio 19	Prep. Coldest Quarter	2.4
Bio 18	Prep. Warmest Quarter	0.9
Slope	Slope	0.7
Distance from rivers	Distance from rivers	0.5
Bio 16	Prep. Wettest Quarter	0
Bio 17	Prep. Driest Quarter	0
Aspect	Aspect	0
Distance from Asadas	Distance from Asadas	0

Figure S3. Distribution of the four main abiotic factors (i.e., altitude, distance to lakes, forest percentage and annual temperature range) that determine the ecological niche of Phyllobates vittatus in Costa Rica. All these maps are in scale 1:1,150,000 and CRS WGS 84.
A. Elevation

B. Distance to lakes

C. Forest percentage

D. Annual temperature range

Figure S4. Response curves of species altitude, distance to lakes, distance to rivers, forest percentage and annual temperature range.
A. Elevation

B. Distance to lakes

C. Distance to rivers

Response of species to distance to rivers

D. Forest percentage

E. Annual temperature range (bio 7)

