Brill Online
Browse
MSR-1573_Supplementary material.pdf (1000.15 kB)

The Relationship between Illusory Crescents and the Stream/Bounce Effect

Download (1000.15 kB)
journal contribution
posted on 2020-10-20, 06:27 authored by Emily J. A-Izzeddin, Philip M. Grove

We conducted two experiments to evaluate Meyerhoff and Scholl’s (2018, Cognition 170, 88–94) hypothesis that illusory crescents contribute to resolutions in audiovisual stream/bounce displays. In Experiment 1, we measured illusory crescent size in the launching effect as a function of speed, overlap, and sound. In Experiment 2, we tabulated stream and bounce responses to similar stimuli with the same speed, sound, and overlap conditions as Experiment 1. Our critical manipulation of target speed spanned the range of values from typical stream/bounce investigations of ~5 degrees/s up to the target speeds employed by Meyerhoff and Scholl ~38 degrees/s. We replicated Meyerhoff and Scholl’s findings at higher speeds, but not at slower speeds. Critically, we found that speed influenced crescent size judgements and bouncing responses in opposite directions. As target speed increased, illusory crescent size increased (Experiment 1), but the overall percentage of bounce responses decreased (Experiment 2). Additionally, we found that sound failed to enhance illusory crescent size at slower speeds but promotes bouncing responses at all speeds. The disassociation of the effects of speed and sound on illusory crescents with those effects on reported streaming/bouncing in similar displays provides compelling evidence against Meyerhoff and Scholl’s hypothesis. Therefore, we conclude that illusory crescents do not account for the pattern of responses attributed to the stream/bounce effect.

History

Usage metrics

    Journals

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC